
PYTHON PARA DATA SCIENCE:
Primeiros Passos



SUMÁRIO

OLÁ, ESTUDANTE!         03
1 INTRODUÇÃO          04
 1.1 Python          04
 1.2 Google Colaboratoy       04
2 COMANDOS BÁSICOS        05
 2.1 Comentários          05
 2.2 print()          05
 2.3 As variáveis         06
  2.3.1 A criação        06
  2.3.2 Tipos de variáveis      06
  2.3.3 Operações com valores numéricos   07
 2.4 Manipulação de strings      07
 2.5 input()          09
  2.5.1 Formatando a saída      10
   2.5.1.1 Casas decimais     11
   2.5.1.2 Caracteres especiais    11
3 ESTRUTURAS DE CONTROLE       13
 3.1 Estruturas condicionais       13
  3.1.1 Operadores em condicionais    14
  3.1.2 Operador Ternário      14
 3.2 Estruturas de repetição      15
  3.2.1 Comandos relacionados aos laços   16
4 ESTRUTURA DE  DADOS        17
 4.1 Listas          17
  4.1.1 Métodos com listas      18
 4.2 Dicionários         19
  4.2.1 Métodos com dicionários     20
CHEGAMOS AO FIM         22



OLÁ, ESTUDANTE!

Essa é a nossa apostila do curso introdução ao Python! Estamos empolgados 
em apresentar este material de estudo, que inclui os resumos dos conteúdos 
ensinados no nosso curso Python para Data Science, além de algumas novi-
dades extras.

Como você já sabe, Python é uma das linguagens mais populares e versáteis 
para a área de Data Science e análise de dados. Nesta apostila, nós cobrimos 
todos os aspectos fundamentais desta linguagem abordados no curso, 
incluindo sua sintaxe, estruturas de controle e dados estruturados.

Fizemos um esforço para que você tenha tudo o que aprendeu em um único 
documento - e adicionamos um pouco mais. Cada tópico é acompanhado de 
exemplos claros e fáceis de seguir para que você possa consolidar seus con-
hecimentos.

O nosso objetivo é fornecer uma base sólida para você se aprofundar no 
mundo da programação com Python e se tornar especialista em Data Science. 
Nós acreditamos que esta apostila será uma ferramenta valiosa em sua jorna-
da de aprendizado e esperamos que você aproveite ao máximo esta oportuni-
dade.

Boa leitura!



 

4 
 

1 INTRODUÇÃO 
1.1 Python 

Python é uma linguagem de 
programação altamente versátil e 
acessível, tornando-a uma das escolhas 
mais populares para iniciantes e 
programadores experientes. É uma 
linguagem de programação de alto nível, o 
que significa que ela permite que você se 
concentre na solução do problema ao 
invés de se preocupar com detalhes 
técnicos de baixo nível. Além disso, o uso 
de sintaxe clara e intuitiva, a semântica 
simples e a facilidade de leitura do código 
fazem com que Python seja fácil de 
aprender e de usar. 

Outra vantagem de Python é a 
quantidade de recursos e bibliotecas 
disponíveis. Existem inúmeras bibliotecas 
e pacotes prontos para uso, que permitem 
que você adicione recursos avançados em 
seus projetos sem precisar escrever o 
código do zero. As bibliotecas mais 
populares incluem NumPy para cálculo 
científico, Pandas para análise de dados, 
Matplotlib para visualização de dados, 
entre outras. 

Além disso, Python é uma linguagem 
multiplataforma, o que significa que o 
código escrito em Python pode ser 
executado em diversos sistemas 
operacionais, incluindo Windows, Mac e 
Linux. Isso é uma vantagem para os 
desenvolvedores, pois eles não precisam 
se preocupar com a compatibilidade de 
sistemas ao escrever seu código. 

Algumas curiosidades sobre Python 
incluem: 

● Python foi criada por Guido van 
Rossum em 1989, mas seu uso só se 
tornou amplo a partir dos anos 2000. 

● Python é uma linguagem dinâmica, o 
que significa que ela permite a 
alteração do tipo de variáveis durante 
a execução do código. 

● Python é usada em uma ampla gama 
de aplicações, incluindo ciência de 
dados, inteligência artificial, 
desenvolvimento de jogos, automação 
de tarefas, entre outros. 

Em resumo, Python é uma 
linguagem de programação que oferece 
muitas vantagens para os programadores, 
incluindo a facilidade de aprendizado, a 
versatilidade, a disponibilidade de recursos 
e bibliotecas, e a opção de ser 
multiplataforma. Se você está procurando 
por uma linguagem de programação para 
aprender, Python é uma excelente 
escolha. 

1.2 Google Colaboratoy 

O Google Colab é uma plataforma 
poderosa e versátil que oferece aos 
usuários uma maneira fácil e eficiente de 
aprender e experimentar com Python. 
Além de ser uma ferramenta gratuita e fácil 
de usar, o Google Colab também oferece 
muitas vantagens para pessoas 
programadoras que desejam aprender 
Python. 

Uma das principais vantagens de 
usar o Google Colab para aprender Python 
é que você pode acessá-lo de qualquer 
lugar, desde que você tenha acesso à 
Internet. Isso significa que você pode 
aproveitar seu tempo livre para estudar, 
mesmo quando estiver fora de casa ou do 
escritório. Além disso, como o Google 
Colab funciona diretamente no navegador, 
você não precisa se preocupar com a 
instalação de software adicional no seu 
computador. 

Em resumo, o Google Colab é uma 
plataforma excelente para aqueles que 
desejam aprender Python, oferecendo 
facilidade de acesso, colaboração em 
tempo real, armazenamento seguro e 
recursos avançados. 

Para acessar o Google Colab e fazer 
os seus projetos, você pode acessar esse 
link. Para que você consiga usá-lo é 
necessário ter uma conta Gmail, pois todo 
notebook ficará armazenado no Google 
Drive.  

https://colab.research.google.com/notebooks/welcome.ipynb


 

5 
 

                                           
2 COMANDOS 
BÁSICOS 

Os comandos básicos em Python 
variam de acordo com o tipo de variável 
manipulada. Existem operações possíveis 
com valores numéricos e também 
manipulações possíveis para strings 
(valores textuais). Dentre os comandos 
básicos gerais podemos citar o print() e o 
input(), que conseguimos utilizar com as 
variáveis. 

2.1 Comentários 

Comentários são úteis quando 
precisamos descrever alguma etapa, 
função ou estrutura dentro do próprio 
código. Essa descrição precisa ser dada 
como uma anotação e, por isso, não pode 
ser considerada um código para ser 
interpretada dentro do ambiente. 

Temos dois tipos de comentários em 
Python: comentários de uma linha e 
comentários de várias linhas. 

Comentários de uma linha são feitos 
adicionando um símbolo de hashtag (#) no 

início de uma linha de código. Tudo o que 
vier depois do símbolo # em uma linha será 

considerado um comentário: 

# Esse é um comentário de uma 

linha 

print(10) # Podemos colocar 

outro comentário em uma linha 

após um código 

Já os comentários de várias linhas 
são feitos usando um conjunto de aspas 
triplas: ''' ou """. Tudo o que estiver 

entre as aspas triplas será considerado um 
comentário, mesmo que seja em várias 
linhas. Exemplo: 

''' 

Esse é um comentário 

de várias linhas. 

''' 

Enquanto o texto estiver dentro das 
aspas, ele será ignorado durante a 
execução do código, seja ele uma linha de 
código ou um texto qualquer. 

Durante esse resumo, você verá 
vários comentários nos códigos, 
descrevendo o código ou mostrando a 
saída de uma execução. 

2.2 print() 

A função print(), imprimir em inglês, 
tem por finalidade mostrar uma frase ou 
dados definidos por quem constrói o 
código. Sua sintaxe é simples e fácil de 
entender. 

print(argumentos) 

Os argumentos são os valores que 

desejamos imprimir na saída. Pode ser um 
texto, um número, entre outros valores. Os 
textos podem ser escritos usando aspas 
simples (') ou duplas ("), como mostrado 

abaixo: 

# usando aspas simples 

print('Olá mundo!') 

 

# usando aspas duplas 

print("Olá mundo!") 

Com isso, conseguimos imprimir um 
texto ou um dado numérico através dessa 
função. 

Podemos imprimir também vários 
tipos de valores no print, necessitando 

apenas separar os dados com vírgulas: 

print('Estamos','no','capítulo',

2) 

## Saída: Estamos no capítulo 2 



 

6 
 

2.3 As variáveis 

2.3.1 A criação 

As variáveis são um componente 
importante de qualquer linguagem de 
programação, pois permitem armazenar e 
manipular dados. Em Python, não é 
necessário definir o tipo de uma variável 
antes de atribuir um valor a ela, pois o tipo 
da variável é determinado 
automaticamente pelo valor atribuído. Isso 
é conhecido como tipagem dinâmica. 

Para criar uma variável precisamos 
atribuir um valor à ela. Para isso, 
precisamos dar nome à variável, o 
operador de atribuição (=) e por fim, o valor 

que desejamos atribuir como mostrado na 
sintaxe abaixo: 

nome_da_variável = valor 

Assim, conseguimos definir 
quaisquer valores a variáveis. Além disso, 
também podemos trocar o valor de uma 
variável a qualquer momento, por outro 
dado. 

Existem algumas regras que devem 
ser seguidas na criação do nome de uma 
variável. 

● O nome da variável não pode começar 
com um número. Deve começar com 
uma letra ou o caractere _. Exemplos 
do que não fazer: 10_notas, 

2_nomes_casa, etc.; 

● Não pode ser usado espaços em 
branco no nome da variável. Exemplos 
do que não fazer: Nome escola, notas 
estudantes, etc. 

● Não é permitido serem usados nomes 
de funções ou palavras-chave do 
Python. Exemplos do que não fazer: 
print, type, True, etc. 

● Não podemos usar caracteres 
especiais, exceto o subtraço (“_”). 

Exemplos do que não fazer: nota-1, 

nota+usada, contagem&soma. 

Outras especificações como a 
descrição da lista de funções e palavras-
chave das regras de criação de nomes 

para variáveis podem ser encontradas na 
documentação. 

Além disso, é recomendável que os 
nomes de variáveis sejam escritos com 
letras minúsculas e separados pelo 
caractere _ para facilitar a leitura e 

manutenção do código. 

2.3.2 Tipos de variáveis 

Em Python, existem vários tipos de 
variáveis, incluindo inteiros, pontos 
flutuantes, strings e booleanos: 

● Inteiros (int): números inteiros, como 

-1, 0, 1, 203, etc; 

● Ponto flutuante (float): números de 

ponto flutuante, como 10.0, 0.5, -
2.45, etc; 

● Strings (str): sequências imutáveis 

de caracteres, como "olá mundo". As 

strings são denotadas por aspas 
simples ou duplas; e 

● Booleanos (bool): valores lógicos 

verdadeiro ou falso, representam o 
True ou False. 

Cada tipo de variável tem seus 
próprios métodos e propriedades 
específicas que podem ser usados para 
manipular e trabalhar com seus valores. 

Podemos criar uma variável de cada 
tipo, seguindo a regra de atribuição: 

# inteiro 

inteiro = 10 

 

# ponto flutuante (float) 

ponto_flutuante = 35.82 

 

# String 

string = 'Brasil' 

 

# Booleano 

booleano = False 

Podemos identificar o tipo de uma 
variável utilizando a função type(), 
seguindo a sintaxe: 

https://docs.python.org/3/reference/lexical_analysis.html#identifiers


 

7 
 

type(variavel) 

Como exemplo, é possível encontrar 
a definição de todos os tipos de variáveis 
que criamos. 

print(type(inteiro)) 

print(type(ponto_flutuante)) 

print(type(string)) 

print(type(booleano)) 

''' Saída: 

<class 'int'> 

<class 'float'> 

<class 'str'> 

<class 'bool'> 

''' 

2.3.3 Operações com 
valores numéricos 

Com os valores numéricos em 
Python podemos realizar operações 
aritméticas, mas para isso é necessário 
fazer o uso dos operadores aritméticos. 
Abaixo, uma tabela descrevendo a função 
dos operadores e sua sintaxe de uso, 
sendo a e b variáveis numéricas: 

Descrição Operação 

Soma a+b 

Subtração a-b 

Multiplicação a*b 

Divisão com resultado real a/b 

Divisão com resultado inteiro a//b 

Potência a**b 

Resto de divisão (Módulo) a%b 

Além deles, existem também 
funções que podem ser aplicadas a valores 
numéricos para executar outros cálculos: 

● Função abs: retorna o valor absoluto 

da variável, ou seja, seu valor positivo. 
○ Sintaxe: abs(variavel) 

○ Exemplo: 

abs(-13) 

## Saída 

# 13 

● Função round: retorna o número 

arredondado com uma precisão 
definida n casas decimais após o 
ponto decimal. Se não especificarmos 
as casas, será retornado o inteiro mais 
próximo do ponto flutuante. 
○ Sintaxe: round(variavel, 

numero_de_casas) 

○ Exemplo: 

round(14.3213,2) 

## Saída 

# 14.32 

● Função pow: retorna a potenciação de 

uma base por seu exponente, 
funciona do mesmo modo que o 
operador **. 

○ Sintaxe: pow(base, expoente) 

○ Exemplo: 

pow(3, 2) 

## Saída 

# 9 

2.4 Manipulação de 
strings 

As strings são usadas para 
armazenar valores de texto e podem ser 
criadas colocando aspas simples (') ou 

aspas duplas ("). Essas variáveis são 

dadas por uma sequência de caracteres 
podendo ser números, letras e até 
símbolos. Como no exemplo: 

string_1 = 'isso é uma string' 

string_2 = "isso também é uma 

string" 

Assim como nas variáveis 
numéricas, é possível manipular as strings 
a partir de operações, funções e até 
métodos. Por serem imutáveis, sua 
manipulação resulta em cópias, ou seja, 
são criadas novas strings a partir de uma 
original que foi manipulada. 

Começando por operações, é 
possível utilizar os operadores de adição 
(+) e multiplicação (*) para trabalhar e criar 



 

8 
 

novas strings. O operador de soma, 
permite unir duas ou mais strings e gerar 
uma string única. Exemplo: 

ola = 'Olá ' 

mundo = 'mundo!!' 

frase = ola+mundo 

print(frase) 

 

## Saída: Olá mundo!! 

Já o operador de multiplicação vai 
repetir a string em uma quantidade de 
vezes igual à especificada. Para usar esse 
operador colocamos a string, depois o 
operador * e o número de vezes que 

desejamos a repetição. Vamos escrever a 
palavra “mano” repetindo a letra “o” por 5 
vezes. 

parte_1 = 'man' 

parte_2 = 'o' * 5 

palavra = parte_1 + parte_2 

print(palavra) 

 

## Saída: manooooo 

Agora vamos falar de funções que 
podem ser úteis na manipulação de 
strings, como a len() e str(). 

A função len() retorna o tamanho 

da string, ou seja, a quantidade  de 
caracteres que ela tem. 

frase = 'o rato roeu a roupa do 

rei de Roma' 

print(len(frase)) 

 

## Saída: 34 

Já a função str() retorna a 

representação de uma string para uma 
entrada. 

ano = str(2023) 

ano 

## Saída: '2023' 

É possível trabalhar com diversos 
métodos em strings. Métodos são funções 
que são associadas a objetos em Python. 
Eles são usados para, de maneira fácil e 
consistente, realizar ações ou operações 
em um objeto e para obter informações 
sobre o objeto. Por essa razão, os métodos 
são uma parte importante da programação 
em Python. 

Métodos podem ser executados ao 
definirmos um objeto seguindo a seguinte 
estrutura: 

objeto.metodo() 

Existem também os atributos que 
são declarados da mesma forma que os 
métodos, no entanto, não necessitam dos 
(). É preciso verificar a documentação de 

cada caso. 

Agora vamos verificar alguns 
métodos com strings. Considerando que 
“string” é o seguinte texto: 

string = 'o rato roeu a roupa do 

rei de Roma' 

Vejamos alguns métodos que 
conseguimos utilizar com qualquer variável 
do tipo str: 

● string.upper(): converte uma string 

para maiúsculas. 
○ Saída: 'O RATO ROEU A ROUPA 

DO REI DE ROMA' 

● string.lower(): converte uma string 

para minúsculas. 
○ Saída: 'o rato roeu a roupa 

do rei de roma' 

● string.capitalize(): coloca a 

primeira letra de uma string em 
maiúscula e as restantes em 
minúsculas. 
○ Saída: 'O rato roeu a roupa 

do rei de roma' 

● string.replace(antigo_valor, 
novo_valor): retorna uma cópia da 

string com a substituição das 
ocorrências. Exemplo: 
string.replace('r', 'T'). 



 

9 
 

○ Saída: 'o Tato Toeu a Toupa 
do Tei de Roma' 

● string.find(dado): retorna o índice 

da primeira ocorrência de um texto em 
na string. Exemplo, vamos encontrar o 
local da primeira aparição de 't' com, 

string.find('t'). 

○ Saída: 4  

● string.strip(): retorna uma cópia 

da string original sem espaços 
desnecessários no início e no final. 
Com o texto, '  Olá! ', podemos 

aplicar o strip e obteremos a seguinte 
saída: 
○ Saída: 'Olá!' 

● string.title(): retorna uma cópia 

da string original com a primeira letra 
de cada palavra em maiúsculas. 
○ Saída: 'O Rato Roeu A Roupa 

Do Rei De Roma' 

● string.count(string): retorna o 

número de vezes que um determinado 
valor aparece na string original. 
Exemplo: string.count('r'). 

○ Saída: 4 

● string.isupper(): retorna True se 

todas as letras na string original 
estiverem em maiúsculas. 
○ Saída: False 

● string.islower(): retorna True se 

todas as letras na string original 
estiverem em minúsculas. 
○ Saída: False 

Lembrando que todos esses 
métodos retornam novos valores, não 
alteram a string original. Para ser feita a 
alteração é preciso atribuir o resultado do 
método na mesma string. Por exemplo: 

string = 'o rato roeu a roupa do 

rei de Roma' 

print(string) 

## 1° Saída: o rato roeu a roupa 

do rei de Roma 

 

string = string.capitalize() 

print(string) 

## 2° Saída: O rato roeu a roupa 

do rei de roma 

2.5 input() 

A função input() permite a quem 

programa receber dados da pessoa 
usuária. É usado para ler e retornar uma 
entrada digitada pelo usuário como string. 
A sintaxe da função input é a seguinte: 

input('string opcional') 

A string opcional é exibida para o 
usuário na tela antes da entrada de dados. 
É uma boa prática incluir ela para orientar 
o usuário sobre o que ele deve digitar. 
Como exemplo, podemos coletar um dado 
de texto e mostrá-lo ao usuário com print. 

nome = input('Digite seu nome: 

') 

print('Seu nome é:', nome) 

 

## Saída: 

#Digite seu nome: Mirla 

#Seu nome é: Mirla 

A variável nome é uma string, pois a 

função input apenas retorna strings. Para 

receber outros valores é necessário fazer 
a conversão de valores com as funções de 
conversão: 

● int(dado): converte o dado para o 

tipo inteiro. 
● float(dado): converte o dado para o 

tipo ponto flutuante (float). 
● str(dado): converte o dado para o 

tipo string. 
● bool(dado): converte o dado para o 

tipo booleano. 

Desse modo, podemos receber os 
dados em strings e transformá-los para o 
tipo de dado que precisamos. Como 
exemplo, vamos construir um algoritmo 
somador: 

# Nesse código vamos somar dois 

números inteiros 

# A função int vai converter a 

saída de input para um valor 

inteiro 



 

10 
 

num_1 = int(input('Digite o 

primeiro número: ')) 

num_2 = int(input('Digite o 

segundo número: ')) 

soma = num_1 + num_2 

 

print('Resultado da soma:',soma) 

 

## Saída: 

# Digite o primeiro número: 2 

# Digite o segundo número: 3 

# Resultado da soma: 5 

O mesmo conseguimos fazer para as 
demais funções de conversão. 

2.5.1 Formatando a saída 

Conseguimos visualizar o resultado 
de variáveis dentro de strings, bem como 
imprimir o texto final em um print. Existem  
várias maneiras de formatar os dados 
mostrados dentro de um print, entre elas 

a formatação f-string, usando o operador 
de formatação %, ou com método format. 

Para utilizar a formatação f-string 
(ou formatação de string), colocamos um f 

antes da criação da string e as variáveis 
entre chaves {}. Exemplo: 

nome = "Ana Maria" 

idade = 17 

print(f"O nome da aluna é {nome} 

e sua idade é {idade} anos.") 

## Saída: O nome da aluna é Ana 

Maria e sua idade é 17 anos. 

O operador de formatação permite 
a inserção de variáveis em pontos 
específicos na string com o operador %. Ele 

precisa ser acompanhado de uma palavra-
chave para cada tipo de variável que se 
deseja adicionar. Seguindo a tabela 
abaixo: 

Tipo de variável Palavra-chave 

string %s 

inteiro %d 

float %f 

caractere %c 

A sintaxe consiste na adição no 
operador ao ponto desejado do texto. 
Finalizada a escrita do texto que se deseja 
exibir, o símbolo % é adicionado, com a 
especificação da variável entre 
parênteses. Exemplo:  

nome_aluno = 'Fabricio Daniel' 

print('Nome do aluno: %s' 

%(nome_aluno)) 

## Saída: Nome do aluno: 

Fabricio Daniel 

Caso tenha mais de uma variável, 
devemos ordená-las conforme o 
surgimento delas no texto e separá-las por 
vírgula. 

nome_aluno = 'Fabricio Daniel' 

idade_aluno = 15 

media_aluno = 8.45 

print('Nome do aluno é %s, ele 

tem %d anos e sua média é %f.' 

%(nome_aluno, idade_aluno, 

media_aluno)) 

## Saída: Nome do aluno é 

Fabricio Daniel, ele tem 15 anos 

e sua média é 8.450000. 

Os operadores de formatação de 
strings com % não funcionam diretamente 

com valores booleanos. Uma maneira de 
lidar com isso é convertendo o valor 
booleano para uma string antes de usá-lo 
na formatação com a função str(). 

 

É possível também usar o método 
format() para fazer a formatação de 

strings. Ele é mais flexível e permite passar 
as variáveis diretamente dentro da string, 
sem a necessidade do operador %. Pelo 

contrário, os marcadores são apenas as 
{}. Exemplo: 

nome_aluno = 'Fabricio Daniel' 

idade_aluno = 15 



 

11 
 

media_aluno = 8.45 

print('Nome do aluno é {}, ele 

tem {} anos e sua média é {}.' 

.format(nome_aluno, idade_aluno, 

media_aluno)) 

 

## Saída: Nome do aluno é 

Fabricio Daniel, ele tem 15 anos 

e sua média é 8.45. 

2.5.1.1 Casas decimais 

Quando trabalhamos com pontos 
flutuantes (float), podemos determinar a 

quantidade de casas decimais após a 
vírgula em todas as formatações de saída 
de texto. 

Com a formatação f-string, usamos a 
sintaxe :.xf após especificar a variável, 

sendo x o número de casas decimais 

desejadas: 

ponto_flutuante = 23.458012 

print(f'Limitando as casas 

decimais {ponto_flutuante:.2f}') 

 

## Saída: 

# Limitando as casas decimais 

23.46 

Já com a formação do operador %, a 
sintaxe é %.xf: 

ponto_flutuante = 23.458012 

print('Limitando as casas 

decimais 

%.3f'%(ponto_flutuante)) 

 

## Saída: 

# Limitando as casas decimais 

23.458 

Por fim, com o método format(), a 
sintaxe para limitar as casas é {:.xf}: 

ponto_flutuante = 23.458012 

print('Limitando as casas 

decimais 

{:.2f}'.format(ponto_flutuante)) 

 

## Saída: 

# Limitando as casas decimais 

23.46 

2.5.1.2 Caracteres especiais 

Caracteres especiais são usados 
para representar ações especiais ou 
caracteres que não podem ser digitados 
diretamente, como o Enter e a tabulação. 

● '\n' é o caractere de nova linha, 

usado para pular uma linha no texto 
(função do Enter). Exemplo: 

print("Precisamos de dedicação 

e paciência,\nPara ver o fruto 

amadurecer.") 

 

## Saída: 

# Precisamos de dedicação e 

paciência, 

# Para ver o fruto amadurecer. 

● '\t' é o caractere de tabulação, 

usado para adicionar um espaço de 
tabulação no texto. Exemplo: 

print('Quantidade\tQualidade\n

5 amostras\tAlta\n3 

amostras\tBaixa') 

 

## Saída: 

# Quantidade Qualidade 

# 5 amostras Alta 

# 3 amostras Baixa 

● '\\' é usado para imprimir uma única 

barra invertida. Caso não seja usada a 
dupla barra invertida, o código poderá 
resultar em erro ou em um resultado 
inesperado, pois o Python considera a 
\ um chamado para um caractere 

especial. Para garantir que não 
ocorram erros, usamos esta sintaxe. 
Exemplo: 



 

12 
 

print("Caminho do arquivo: 

C:\\arquivos\\documento.csv") 

 

## Saída: 

# Caminho do arquivo: 

C:\arquivos\documento.csv 

● "\"" é usado para imprimir aspas 

duplas quando estamos trabalhando 
com uma string criada a partir de 
aspas duplas ". Caso seja uma string 

criada por aspas simples ', isso não é 

necessário. Um exemplo: 

print("Ouvi uma vez \"Os 

frutos do conhecimento são os 

mais doces e duradouros de 

todos.\"") 

 

## Saída: 

# Ouvi uma vez "Os frutos do 

conhecimento são os mais doces 

e duradouros de todos." 

● '\'' é usado para imprimir aspas 

simples quando estamos trabalhando 
com uma string criada a partir de 
aspas simples '. Caso seja uma string 

criada por aspas duplas ", isso não é 

necessário. Exemplo: 

print('Minha professora uma 

vez disse: \'Estudar é a chave 

do sucesso.\' ') 

 

## Saída: 

# Minha professora uma vez 

disse: 'Estudar é a chave do 

sucesso.' 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

13 
 

                                         
3 ESTRUTURAS 
DE CONTROLE 

Entre as estruturas de controle estão 
as estruturas condicionais e as estruturas 
de repetição. 

3.1 Estruturas 
condicionais 

Nas estruturas condicionais temos o 
if, o else e o elif. 

O if é uma palavra-chave em 

Python que significa “se”. Ele é usado para 
formar uma estrutura condicional, que 
permite que você verifique se uma 
determinada condição é verdadeira ou 
falsa e, em seguida, executa um bloco de 
código específico, se a verificação for 
verdadeira. A sintaxe para usar o if é: 

if condição: 

    # faça algo 

Podemos montar um exemplo que 
identifica se um dado número é maior que 
5: 

num = int(input('Digite um 

número: ')) 

if num>5: 

  print('O número é maior que 

5') 

 

## Saída: 

# Digite um número: 8 

# O número é maior que 5 

Já o else é uma estrutura opcional 

usada em conjunto com o if para formar 

uma estrutura condicional. O else é uma 

palavra-chave para “senão” e é executado 
quando a condição especificada na 
estrutura condicional anterior não for 

verdadeira (False). A sintaxe para usar o 

else é: 

if condição: 

  # código caso seja verdade 

else: 

  # código caso seja falso 

Podemos montar um exemplo que 
identifica se um dado número é maior ou 
menor que 5: 

num = int(input('Digite um 

número: ')) 

if num>5: 

  print('O número é maior que 

5') 

else: 

  print('O número é menor que 

5') 

 

## Saída: 

# Digite um número: 3 

# O número é menor que 5 

Por fim, temos o elif, uma palavra-

chave em Python que significa "senão, se" 
e pode ser considerado uma união do else 

com o if. Ela é usada em conjunto com a 

palavra-chave if para formar uma 

estrutura condicional encadeada. Sua 
sintaxe é dada pela seguinte estrutura: 

if condição1: 

    # faça algo 

elif condição2: 

    # faça outra coisa 

elif condição3: 

    # faça mais alguma coisa 

O elif permite encadear condições. 

Se a primeira condição for avaliada como 
False, o interpretador Python avaliará a 

próxima condição no elif, e assim por 

diante. Isso continuará até que uma 
condição seja avaliada como True, ou 

nenhuma das condições sejam 
verdadeiras e sejam ignorados os blocos 
de código. 



 

14 
 

Um exemplo de código com elif é a 
estrutura para verificar, dados dois 
números, qual é o maior entre eles ou se 
ambos são iguais: 

# Coletar os números 

num1 = float(input('Digite o 1° 

número: ')) 

num2 = float(input('Digite o 2° 

número: ')) 

 

# Comparamos ambos os números e 

descobrimos qual é o maior 

if num1 > num2: 

    print(f'O primeiro número é 

maior: {num1}') 

elif num2 > num1: 

    print(f'O segundo número é 

maior: {num2}') 

else: # Caso os números sejam 

iguais 

    print('Os dois números são 

iguais.') 

3.1.1 Operadores em 
condicionais 

Para formar uma expressão lógica 
podemos fazer o uso de operadores 
relacionais e operadores lógicos. 

Os operadores relacionais são 
símbolos utilizados com objetivo de 
comparar valores ou expressões e verificar 
a relação entre eles. Vejamos alguns 
deles: 

● Maior que (>): verifica se a primeira 

expressão é maior que a segunda. 
● Menor que (<): verifica se a primeira 

expressão é menor que a segunda. 
● Maior ou igual a (>=): verifica se a 

primeira expressão é maior ou igual à 
segunda. 

● Menor ou igual a (<=): verifica se a 

primeira expressão é menor ou igual à 
segunda. 

● Igual a (==): verifica se duas 

expressões são iguais. 

● Diferente de (!=): verifica se duas 

expressões são diferentes. 

Estes operadores retornam um valor 
booleano (True ou False) baseado na 

comparação entre os valores ou 
expressões.  

Os operadores lógicos são 
símbolos utilizados para realizar 
operações lógicas, entre valores, podendo 
retornar True ou False. Os operadores 

lógicos são: and, or e not. De modo que, 

● and retorna verdadeiro se ambas as 

expressões lógicas forem verdadeiras; 
● or retorna verdadeiro se pelo menos 

uma das expressões lógicas for 
verdadeira; e 

● not inverte o valor lógico da 

expressão, ou seja, se a expressão 
era True, ele retorna False, e vice-

versa. 

3.1.2 Operador Ternário 

Podemos compactar o resultado de 
uma condição if-else em uma única linha. 
É uma alternativa útil para codificação mais 
simples e clara, especialmente quando se 
trata de uma condição simples. A sintaxe 
do operador ternário é a seguinte: 

valor_caso_verdade if condição 

else valor_caso_falso 

Seu funcionamento se dá de modo 
que a condição é avaliada e, se for 

verdadeira, o valor_caso_verdade é 

retornado, caso contrário, o 
valor_caso_falso é retornado. Em 

outras palavras, é uma forma de atribuir 
valores a variáveis com base em uma 
condição. 

Um exemplo simples  é a verificação 
se um número é positivo ou negativo. 

num = -5 

resultado = 'positivo' if num >= 

0 else 'negativo' 

print(resultado) 

 



 

15 
 

## Saída: 

# negativo 

Entendendo o código: o operador 
ternário testa a condição num >= 0, se for 

verdadeira, o valor de 'positivo' é 

atribuído a resultado, caso contrário, o 
valor de 'negativo' é atribuído a 

resultado. 

3.2 Estruturas de 
repetição 

Nas estruturas de repetição temos o 
while e o for. 

O while é uma palavra-chave em 

Python que significa “enquanto”. Ela 
permite executar um bloco de código 
repetidamente enquanto uma determinada 
condição é verdadeira. Sua sintaxe é dada 
da seguinte forma: 

while condição: 

  # bloco de código 

O bloco de código dentro do laço 
while será executado repetidamente 

enquanto a condição for avaliada como 
True. Quando a condição for avaliada 

como False, o laço será interrompido e o 

programa continuará a executar o código 
depois do laço. 

Um exemplo muito comum de uso do 
while é construindo um contador, um 

projeto que permite uma variável numérica 
ser incrementada 1 a 1, como uma 
contagem. Vamos fazer o contador de 1 a 
10: 

# inicializamos a variável 

contadora em 1 

# essa variável será 

incrementada 

contadora = 0 

# o while irá repetir enquanto a 

# contadora não for maior que 10 

while contadora < 10: 

  # incrementamos seu valor em 1 

  # a cada iteração 

  contadora += 1 

  print(contadora) 

 

## Saída: 

# 1 

# 2 

# 3 

# 4 

# 5 

# 6 

# 7 

# 8 

# 9 

# 10 

O incremento de contadora é dado 

por um operador de atribuição +=. Em 

Python temos vários tipos de operadores 
de atribuição como pode ser observado na 
tabela abaixo: 

Sintaxe do 
operador 

Descrição 

a = b Atribui o valor de b em a 

a += b 
Soma o valor de b na 

variável a  

a -= b 
Subtrai o valor de b na 

variável a  

a *= b Multiplica o valor de b por a 

a /= b Divide o valor de b por a 

a //= b 
Realiza divisão inteira da 
variável b por a 

a %= b 
O resto da divisão de b por 

a é atribuído à a 

Enquanto isso, o laço for permite 

iterar sobre um conjunto de elementos. A 
sua sintaxe é dada da seguinte forma: 

for elemento in conjunto: 

  # código a ser executado para 

cada elemento 

O for é uma palavra chave para 

“por” e podemos entender sua estrutura 
como “por cada elemento em um dado 
conjunto faça…”. Isso porque ele itera 
sobre cada elemento do conjunto 



 

16 
 

especificado e executa o bloco de código 
dentro do laço para cada elemento. 

Quando o laço chega ao final do 
conjunto, ele é interrompido e o programa 
continua a execução após o laço. 

Podemos também construir uma 
contadora com for, mas para isso 
precisamos de um conjunto iterável que 
possa ser utilizado nele. Pensando nisso, 
utilizaremos a função range. 

A função range é capaz de gerar 

uma sequência de números inteiros. A sua 
sintaxe é dada por: 

range(inicio, fim, passo) 

Segundo a documentação, ao 
range() gera uma sequência de números 

inteiros a partir do valor do parâmetro 
inicio até o valor do parâmetro fim, de 

acordo com o valor do parâmetro passo. 

Se inicio não for especificado, o valor 

padrão é 0. Se passo não for especificado, 

o valor padrão é 1. 

# Não é preciso inicializar uma 

# variável 

# o for percorre todo o conjunto 

# de números 1 a 10 

for contador in range(1, 11): 

  print(contador) 

 

## Saída: 

# 1 

# 2 

# 3 

# 4 

# 5 

# 6 

# 7 

# 8 

# 9 

# 10 

 

3.2.1 Comandos 
relacionados aos laços 

Conseguimos controlar o fluxo de 
execuções dentro do bloco de código dos 
laços while e for através dos comandos 

de controle continue e break. 

O continue interrompe a iteração 

atual do laço e salta para a próxima 
iteração, ou seja, retorna ao início do 
código. Já o break vai interromper a 

execução do laço completamente, saindo 
do bloco de código. 

 

 

 

 

 

 

  

https://docs.python.org/3/library/functions.html#func-range


 

17 
 

                                        
4 ESTRUTURA 
DE  DADOS 
4.1 Listas 

Listas são sequências mutáveis, 
normalmente usadas para armazenar 
coleções de itens. 

Podemos agrupar um conjunto de 
dados com as listas de maneira ordenada. 
Para criar uma lista com valores, são 
colocados os dados entre colchetes ([]) 

separados por vírgulas. 

Elas também podem armazenar 
qualquer tipo de item, incluindo números, 
strings, objetos, outras listas e também 
outras estruturas de dados. Todos esses 
tipos de dados podem ser armazenados 
juntos em uma mesma lista, pois ela não 
se limita a armazenar um único tipo de 
dado. 

Um exemplo de criação de lista é 
construção de um conjunto de dados 
cadastrais: 

# lista com nome, salário, idade 

# e situação de empregabilidade 

lista = ['Daniel',2310.30, 

24,True] 

print(lista) 

 

## Saída: 

# ['Daniel', 2310.3, 24, True] 

Cada elemento da lista tem um 
índice que indica sua posição na lista. Os 
índices começam em 0 e vão até o 

tamanho da lista menos 1. 

No exemplo anterior, temos 4 
elementos com índices variando de 0 a 3, 

ordenadamente. Ou ordenados de -4 a -
1, visto que os índices podem ser 

negativos também. 

É possível selecionar 
separadamente os elementos de uma lista 
colocando seus índices. 

lista = ['Daniel',2310.30, 

24,True] 

# com índices positivos 

print(lista[0],lista[1],lista[2]

,lista[3]) 

# com índices negativos 

print(lista[-4],lista[-

3],lista[-2],lista[-1]) 

 

## Saída: 

# Daniel 2310.3 24 True 

# Daniel 2310.3 24 True 

É possível usar as estruturas de 
repetição para acessar e ler os valores de 
uma lista. A forma mais comum de se fazer 
isso é utilizando o laço for: 

lista = ['Daniel',2310.30, 

24,True] 

for elemento in lista: 

  print(elemento) 

 

## Saída: 

# Daniel 

# 2310.3 

# 24 

# True 

Podemos também usar o laço while, 

através de um contador: 

lista = ['Daniel',2310.30, 

24,True] 

contadora = 0 

while contadora < 4: 

  print(lista[contadora]) 

  contadora += 1 

 

## Saída: 

# Daniel 

# 2310.3 

# 24 



 

18 
 

# True 

É possível observar que o bloco de 
código para ler uma lista com while é 

muito maior que com for. Por isso, quando 

trabalhamos com estruturas de dados, é 
preferível utilizar o laço for. 

Além disso, podemos usar as 
mesmas funções e métodos utilizados em 
variáveis únicas como strings, inteiros, 
floats, etc nos elementos da lista. Mas é 
preciso que o elemento manipulado seja 
do tipo de variável que permite a aplicação 
das funções e métodos.  

 Por exemplo, é possível deixar o 
elemento 'Daniel', uma string, em 

maiúsculas com o método upper(): 

lista = ['Daniel',2310.30, 

24,True] 

 

print(lista[0].upper()) 

 

## Saída: 

# DANIEL  

Conseguimos também substituir 
elementos, além de manipulá-los. Para 
isso, especificamos o índice do elemento a 
ser substituído e atribuímos o novo dado 
com o operador de atribuição. Podemos 
então substituir a string 'Daniel' por sua 

correspondente em maiúscula ('DANIEL'): 

lista = ['Daniel',2310.30, 

24,True] 

print(lista) 

 

lista[0] = lista[0].upper() 

print(lista) 

 

## Saída: 

# ['Daniel', 2310.3, 24, True] 

# ['DANIEL', 2310.3, 24, True] 

4.1.1 Métodos com listas 

Listas oferecem muitas funções e 
métodos úteis para manipular os itens 
armazenados, como adicionar, remover, 
classificar e pesquisar elementos. 

Então vamos verificar alguns 
métodos com listas. Considerando que 
“lista” é o seguinte conjunto de dados: 

lista = ['Osman Presley', 13, 

8.5, 8.5] 

Vejamos alguns métodos que 
conseguimos utilizar com qualquer variável 
do tipo list (lista): 

● append: adiciona um elemento ao final 

da lista. 
○ Exemplo: lista.append(4.5), a 

lista agora é ['Osman Presley', 
13, 8.5, 8.5, 4.5]. 

● clear: remove todos os elementos da 

lista. 
○ Exemplo: lista.clear(), a lista 

agora é []. 

● copy: faz uma cópia da lista.  

○ Exemplo: nova_lista = 
lista.copy(), nova_lista 

agora é ['Osman Presley', 13, 
8.5, 8.5, 4.5] e é uma cópia 

independente de lista. 
● count: conta quantas vezes um 

elemento aparece na lista. 
○ Exemplo: lista.count(8.5), 

retorna 2. 

● extend: adiciona os elementos de 

uma lista ao final da lista atual. 
○ Exemplo: 

lista.extend(['manhã','tard
e']), a lista agora é ['Osman 
Presley', 13, 8.5, 8.5, 
'manhã', 'tarde']. 

● index: retorna o índice do primeiro 

elemento com o valor especificado. 
○ Exemplo: lista.index(13), 

retorna 1. 

● insert: adiciona um elemento em 

uma posição específica da lista. 
○ Exemplo: lista.insert(2, 

4.5), a lista agora é ['Osman 



19 

Presley', 13, 4.5, 8.5, 
8.5]. 

● pop: remove e retorna o elemento na

posição especificada (ou na última
posição se não for fornecida uma
posição).
○ Exemplo: lista.pop(1), retorna

13 e a lista agora é ['Osman
Presley', 8.5, 8.5].

● remove: remove o primeiro elemento

com o valor especificado.
○ Exemplo: lista.remove(8.5), a

lista agora é ['Osman Presley',
13, 8.5].

● reverse: inverte a ordem dos

elementos na lista.
○ Exemplo: lista.reverse(), a

lista agora é [8.5, 8.5, 13,
'Osman Presley'].

Há também o método sort que 

ordena os elementos na lista. Mas como 
nossa lista não é unicamente numérica, 

não é possível utilizar esse método, pois 
ele ordenará apenas valores numéricos ou 
apenas valores textuais. 

Uma função bastante utilizada com 
listas é a len(), que retorna a quantidade 

de elementos dentro delas: 

idades = [23,15,37,43,90,53] 

print(len(idades)) 

## Saída: 

# 8 

Além dela também existe a estrutura 
de partição: uma maneira de acessar um 
subconjunto de elementos de uma lista. 
Podemos fazer isso através da estrutura 
de partição por índices. 

O operador de partição de lista é 
representado pelos colchetes ([]) e 

permite que você especifique um intervalo 
de índices separados por dois pontos (:) 

para acessar os elementos desejados. 

letras = 

['A','B','C','D','E','F','G'] 

print(letras[2:6]) 

## Saída: 

# ['C', 'D', 'E', 'F'] 

Com letras[2:6], é acessado os 

elementos da lista letras de índice 2 até 

o índice 5, ou seja, os elementos ['C', 
'D', 'E', 'F'].

4.2 Dicionários 

Os dicionários são um tipo de 
estrutura de dados que armazenam pares 
de chave-valor. Eles são delimitados por 
chaves {} e os pares chave-valor são 

separados por vírgulas, como mostra a 
sintaxe: 

dicionario = {chave: valor} 

A chave é um elemento único que 

identifica um valor no dicionário, enquanto 
o valor é o item que é armazenado para a

chave. As chaves e os valores podem ser
de qualquer tipo de dado.

Os dicionários são úteis para 
armazenar e acessar dados de maneira 
organizada e rápida, além de permitirem 
uma organização mais dinâmica. 

Um exemplo é construir uma ficha de 
cadastro de uma pessoa funcionária em 
uma empresa. 

cadastro = {'numero_cadastro': 

130089, 

 'dia_cadastro': 3, 

 'mes_cadastro': 2, 

 'funcao': 'limpeza'} 

cadastro 

## Saída: 

# {'número_cadastro': 130089, 

#  'dia_cadastro': 3, 

#  'mes_cadastro': 2, 

#  'funcao': 'limpeza'} 



 

20 
 

Acessamos os valores de cada 
elemento especificando sua chave 
correspondente: 

cadastro = {'numero_cadastro': 

130089, 

            'dia_cadastro': 3, 

            'mes_cadastro': 2, 

            'funcao': 'limpeza'} 

print(cadastro['numero_cadastro'

],cadastro['dia_cadastro'],cadas

tro['mes_cadastro'],cadastro['fu

ncao']) 

 

## Saída: 

# 130089 3 2 limpeza 

Podemos alterar o valor de cada 
chave especificando  a chave do elemento 
que será modificado e atribuindo o novo 
dado com o operador de atribuição. Vamos 
trocar a função de limpeza para 
manutenção: 

cadastro = {'numero_cadastro': 

130089, 

            'dia_cadastro': 3, 

            'mes_cadastro': 2, 

            'funcao': 'limpeza'} 

print(cadastro) 

cadastro['funcao'] = 

'manutenção' 

print(cadastro) 

 

## Saída: 

# {'numero_cadastro': 130089, 

'dia_cadastro': 3, 

'mes_cadastro': 2, 'funcao': 

'limpeza'} 

# {'numero_cadastro': 130089, 

'dia_cadastro': 3, 

'mes_cadastro': 2, 'funcao': 

'manutenção'} 

4.2.1 Métodos com 
dicionários 

Assim como as listas, os dicionários 
também oferecem muitas funções e 
métodos úteis para manipular seus itens. 

Então, vamos verificar alguns 
métodos com listas, considerando que 
“dici” é o seguinte conjunto de dados: 

dici = {'nome': 'Osman', 

        'idade': 13, 

        'nota_1': 8.5, 

        'nota_2': 8.5} 

Vejamos alguns métodos que 
conseguimos utilizar com qualquer variável 
do tipo dict (dicionário): 

● clear: remove todos os itens de um 

dicionário. 
○ Exemplo: dici.clear() a lista 

agora é {}. 

● copy: retorna uma cópia do dicionário. 

○ Exemplo: novo_dicionario = 
dici.copy(), novo_dicionario 

agora é {'nome': 'Osman', 
'idade': 13, 'nota_1': 8.5, 
'nota_2': 8.5} e é uma cópia 

independente de dici. 

● dict.fromkeys: cria um novo 

dicionário com chaves fornecidas por 
um iterável e todos os valores 
definidos como o valor padrão 
fornecido. 
○ Exemplo: novas_notas = 

dict.fromkeys(['nota_1', 
'nota_2'], 8.0), novas_notas 

é {'nota_1': 8.0, 'nota_2': 
8.0}. 

● get: retorna o valor associado a uma 

chave específica no dicionário. 
○ Exemplo: dici.get('idade'), 

retorna 13. 

● items: retorna uma lista de tuplas que 

representam os itens do dicionário 
(chave e valor). 
○ Exemplo: dici.items(), retorna 

[('nome', 'Osman'), 
('idade', 13), ('nota_1', 
8.5), ('nota_2', 8.5)]. 

https://www.alura.com.br/artigos/conhecendo-as-tuplas-no-python


 

21 
 

● keys: retorna uma lista de todas as 

chaves do dicionário. 
○ Exemplo: dici.keys(), retorna 

['nome', 'idade', 'nota_1', 
'nota_2']. 

● pop: remove e retorna o valor 

associado a uma chave específica no 
dicionário. 
○ Exemplo: dici.pop('nome'), 

retorna 'Osman' e o dicionário 

sem a chave 'nome'. 

● popitem: remove e retorna um item 

aleatório do dicionário. 
○ Exemplo: dici.popitem() 

● setdefault: retorna o valor 

associado a uma chave específica no 
dicionário. Se a chave não existir, ela 
é adicionada ao dicionário com o valor 
padrão fornecido. 
○ Exemplo: 

dici.setdefault('nome'), 

retorna 'Osman'; 
dici.setdefault('nota_3',4.
5) o dicionário será {'nome': 
'Osman', 'idade': 13, 
'nota_1': 8.5, 'nota_2': 
8.5, 'nota_3': 4.5}.  

● update: adiciona os itens de um outro 

dicionário para o dicionário atual e 
atualiza pares chave-valor existentes. 
○ Exemplo: 

dici.update({'nota_3': 4.5, 
'sobrenome': 'Presley'}),  o 

dicionário agora é {'nome': 
'Osman', 'idade': 13, 
'nota_1': 8.5, 'nota_2': 
8.5, 'nota_3': 4.5, 
'sobrenome': 'Presley'}. 

● values: retorna uma lista de todos os 

valores do dicionário. 
○ Exemplo: dici.values(), 

retorna ['Osman', 13, 8.5, 
8.5]. 

Os métodos items, keys e values 

permitem a leitura dos dados do dicionário 
através de laços for. Vamos fazer três 

diferentes leituras com for, utilizando os 
três métodos que aprendemos: 

dici = {'nome': 'Osman', 

        'idade': 13, 

        'nota_1': 8.5, 

        'nota_2': 8.5} 

 

# Leitura com keys 

for chaves in dici.keys(): 

  print(dici[chaves]) 

## Saída 

# Osman 

# 13 

# 8.5 

# 8.5 

 

#Leitura com values 

for valores in dici.values(): 

  print(valores) 

## Saída 

# Osman 

# 13 

# 8.5 

# 8.5 

 

# Leitura com items 

for chaves, valores in 

dici.items(): 

  print(chaves, valores) 

## Saída 

# nome Osman 

# idade 13 

# nota_1 8.5 

# nota_2 8.5 

 



CHEGAMOS AO FIM

Espero que você consiga ter um bom proveito das informações coloca-
das aqui e que elas consigam te ajudar em seus estudos em Python e 
Data Science!

O resumo contém as informações já transmitidas em aula, mas para so-
lidificar o aprendizado em Python é necessário sempre praticar 
bastante. No curso, você tem acesso a vários desafios que você con-
segue solucionar com os estudos na Alura!

Continue sempre estudando e quaisquer dúvidas você pode utilizar o 
fórum e o discord da Alura.

Bons estudos!




