PYTHON PARA DATA SCIENCE:
Primeiros Passos

alura % Escola de
Data Science

SUMARIO

OLA,ESTUDANTE!
1INTRODUCAO
1.1 Python
1.2 Google Colaboratoy
2 COMANDOS BASICOS
2.1 Comentarios
2.2 print()
2.3 As variaveis
2.3.1 A criagao
2.3.2 Tipos de variaveis
2.3.3 Operacdes com valores numeéricos
2.4 Manipulacao de strings
2.5 input()
2.5.1 Formatando a saida
2.5.1.1 Casas decimais
2.5.1.2 Caracteres especiais
3 ESTRUTURAS DE CONTROLE
3.1 Estruturas condicionais
3.1.1 Operadores em condicionais
3.1.2 Operador Ternario
3.2 Estruturas de repeticao
3.2.1 Comandos relacionados aos lagos
4 ESTRUTURA DE DADOS
4.1 Listas
4.1.1 Métodos com listas
4.2 Dicionarios
4.2.1 Métodos com dicionarios
CHEGAMOS AO FIM

03
04
04
04
05
05
05
06
06
06
07
0y
09
10
1
1
13
13
14
14
15
16
17
17
18
19
20
22

OLA,ESTUDANTE!

Essa é a nossa apostila do curso introdugao ao Python! Estamos empolgados
em apresentar este material de estudo, que inclui os resumos dos conteudos
ensinados no nosso curso Python para Data Science, além de algumas novi-
dades extras.

Como vocé ja sabe, Python é uma das linguagens mais populares e versateis
para a area de Data Science e andlise de dados. Nesta apostila, nds cobrimos
todos os aspectos fundamentais desta linguagem abordados no curso,
incluindo sua sintaxe, estruturas de controle e dados estruturados.

Fizemos um esforgo para que vocé tenha tudo o que aprendeu em um unico
documento - e adicionamos um pouco mais. Cada topico € acompanhado de
exemplos claros e faceis de seguir para que vocé possa consolidar seus con-
hecimentos.

O nosso objetivo é fornecer uma base sodlida para vocé se aprofundar no
mundo da programacgao com Python e se tornar especialista em Data Science.
Noés acreditamos que esta apostila sera uma ferramenta valiosa em sua jorna-
da de aprendizado e esperamos que vocé aproveite ao maximo esta oportuni-
dade.

Boa leitura!

PYTHON PARA DATA SCIENCE:

1INTRODUCAO
1.1 Python

Python ¢é wuma linguagem de
programacdo altamente versatii e
acessivel, tornando-a uma das escolhas
mais populares para iniciantes e
programadores experientes. E uma
linguagem de programacéao de alto nivel, o
gue significa que ela permite que vocé se
concentre na solucdo do problema ao
invés de se preocupar com detalhes
técnicos de baixo nivel. Além disso, 0 uso
de sintaxe clara e intuitiva, a semantica
simples e a facilidade de leitura do cédigo
fazem com que Python seja facil de
aprender e de usar.

Outra vantagem de Python é a
guantidade de recursos e bibliotecas
disponiveis. Existem inUmeras bibliotecas
e pacotes prontos para uso, que permitem
gue vocé adicione recursos avangados em
seus projetos sem precisar escrever 0
cédigo do zero. As bibliotecas mais
populares incluem NumPy para célculo
cientifico, Pandas para andlise de dados,
Matplotlib para visualizagdo de dados,
entre outras.

Além disso, Python é uma linguagem
multiplataforma, o que significa que o
cédigo escrito em Python pode ser
executado em diversos sistemas
operacionais, incluindo Windows, Mac e
Linux. Isso é uma vantagem para 0s
desenvolvedores, pois eles ndo precisam
se preocupar com a compatibilidade de
sistemas ao escrever seu codigo.

Algumas curiosidades sobre Python
incluem:

e Python foi criada por Guido van
Rossum em 1989, mas seu uso s6 se
tornou amplo a partir dos anos 2000.

e Python é uma linguagem dinamica, o
que significa que ela permite a
alteracao do tipo de variaveis durante
a execugdo do codigo.

e Python é usada em uma ampla gama
de aplicacdes, incluindo ciéncia de
dados, inteligéncia artificial,
desenvolvimento de jogos, automacao
de tarefas, entre outros.

Em resumo, Python ¢€é uma
linguagem de programacdo que oferece
muitas vantagens para os programadores,
incluindo a facilidade de aprendizado, a
versatilidade, a disponibilidade de recursos
e bibliotecas, e a opcdo de ser
multiplataforma. Se vocé esté procurando
por uma linguagem de programacao para
aprender, Python €é wuma excelente
escolha.

1.2 Google Colaboratoy

O Google Colab é uma plataforma
poderosa e versatii que oferece aos
usuérios uma maneira facil e eficiente de
aprender e experimentar com Python.
Além de ser uma ferramenta gratuita e facil
de usar, o Google Colab também oferece
muitas vantagens para pessoas
programadoras que desejam aprender
Python.

Uma das principais vantagens de
usar o Google Colab para aprender Python
€ que vocé pode acessa-lo de qualquer
lugar, desde que vocé tenha acesso a
Internet. Isso significa que vocé pode
aproveitar seu tempo livre para estudar,
mesmo quando estiver fora de casa ou do
escritorio. Além disso, como o Google
Colab funciona diretamente no navegador,
VOcé ndo precisa se preocupar com a
instalacdo de software adicional no seu
computador.

Em resumo, o Google Colab é uma
plataforma excelente para aqueles que
desejam aprender Python, oferecendo
facilidade de acesso, colaboracdo em
tempo real, armazenamento seguro e
recursos avangados.

Para acessar o Google Colab e fazer
0S seus projetos, vocé pode acessar esse
link. Para que vocé consiga usa-lo é
necessario ter uma conta Gmail, pois todo
notebook ficarda armazenado no Google
Drive.

4

alura| &8 pata Science

https://colab.research.google.com/notebooks/welcome.ipynb

PYTHON PARA DATA SCIENCE:

2 COMANDOS
BASICOS

Os comandos basicos em Python
variam de acordo com o tipo de variavel
manipulada. Existem operagcdes possiveis
com valores numéricos e também
manipulacdes possiveis para strings
(valores textuais). Dentre os comandos
basicos gerais podemos citar o print() e 0
input(), que conseguimos utilizar com as
variaveis.

2.1 Comentarios

Comentarios sédo Uteis quando
precisamos descrever alguma etapa,
funcdo ou estrutura dentro do proéprio
codigo. Essa descricdo precisa ser dada
COmo uma anotagao e, por isso, ndo pode
ser considerada um coédigo para ser
interpretada dentro do ambiente.

Temos dois tipos de comentarios em
Python: comentarios de uma linha e
comentarios de varias linhas.

Comentarios de uma linha sao feitos
adicionando um simbolo de hashtag (#) no
inicio de uma linha de codigo. Tudo o que
vier depois do simbolo # em uma linha sera
considerado um comentario:

print(10)

J& os comentarios de varias linhas
sdo feitos usando um conjunto de aspas
triplas: """ ou """. Tudo o que estiver
entre as aspas triplas sera considerado um
comentario, mesmo que seja em varias
linhas. Exemplo:

Esse é um comentario

de varias linhas.

Enquanto o texto estiver dentro das
aspas, ele serd ignorado durante a
execuc¢do do cadigo, seja ele uma linha de
codigo ou um texto qualquer.

Durante esse resumo, VvOcé vera
varios comentarios nos cédigos,
descrevendo o cédigo ou mostrando a
saida de uma execucao.

2.2 print()

A fungéo print(), imprimir em inglés,
tem por finalidade mostrar uma frase ou
dados definidos por quem constréi o
cbdigo. Sua sintaxe é simples e facil de
entender.

print(argumentos)

Os argumentos sdo os valores que
desejamos imprimir na saida. Pode ser um
texto, um nimero, entre outros valores. Os
textos podem ser escritos usando aspas
simples (') ou duplas ("), como mostrado
abaixo:

print('01a mundo!")

print("01a mundo!")

Com isso, conseguimos imprimir um
texto ou um dado numeérico através dessa
funcgéo.

Podemos imprimir também varios
tipos de valores no print, necessitando
apenas separar os dados com virgulas:

print('Estamos', 'no', "capitulo’,
2)

5

alura | %2 pata Science

PYTHON PARA DATA SCIENCE:

2.3 As variaveis

2.3.1 A criacao

As varidveis sdo um componente
importante de qualquer linguagem de
programagao, pois permitem armazenar e
manipular dados. Em Python, ndo ¢é
necessario definir o tipo de uma variavel
antes de atribuir um valor a ela, pois o tipo
da variavel e determinado
automaticamente pelo valor atribuido. Isso
€ conhecido como tipagem dinamica.

Para criar uma variavel precisamos
atribuir um valor a ela. Para isso,
precisamos dar nome a variavel, o
operador de atribuicdo (=) e por fim, o valor
gue desejamos atribuir como mostrado na
sintaxe abaixo:

nome_da_variavel = valor

Assim, conseguimos definir
quaisquer valores a variaveis. Além disso,
também podemos trocar o valor de uma
variavel a qualgquer momento, por outro
dado.

Existem algumas regras que devem
ser seguidas na criagdo do nome de uma
variavel.

e O nome da variavel ndo pode comecar
com um numero. Deve comecar com
uma letra ou o caractere _. Exemplos
do que ndo fazer: 10_notas,
2_nomes_casa, €etc.;

e NA&o pode ser usado espagos em
branco no nome da variavel. Exemplos
do que ndo fazer: Nome escola, notas
estudantes, etc.

e Na&o € permitido serem usados nomes
de fungbes ou palavras-chave do
Python. Exemplos do que néo fazer:
print, type, True, etc.

e N&ao podemos wusar caracteres
especiais, exceto o subtragco (“ 7).
Exemplos do que né&o fazer: nota-1,
nota+usada, contagem&soma.

Outras especificacbes como a
descricdo da lista de funcbes e palavras-
chave das regras de criagdo de nomes

para variaveis podem ser encontradas na
documentacéo.

Além disso, é recomendavel que os
nomes de varidveis sejam escritos com
letras minUsculas e separados pelo
caractere _ para faciltar a leitura e
manutenc¢do do codigo.

2.3.2 Tipos de variaveis

Em Python, existem varios tipos de
variaveis, incluindo inteiros, pontos
flutuantes, strings e booleanos:

e Inteiros (int): nimeros inteiros, como
-1,0,1, 203, etc;

e Ponto flutuante (float): nimeros de
ponto flutuante, como 10.0, 0.5, -
2.45, etc;

e Strings (str): sequéncias imutaveis
de caracteres, como "ola mundo". As
strings sdo denotadas por aspas
simples ou duplas; e

e Booleanos (bool): valores logicos
verdadeiro ou falso, representam o
True ou False.

Cada tipo de variavel tem seus
préprios métodos e propriedades
especificas que podem ser usados para
manipular e trabalhar com seus valores.

Podemos criar uma variavel de cada
tipo, seguindo a regra de atribuicdo:

inteiro = 10
ponto_flutuante = 35.82
string = 'Brasil’
booleano = False
Podemos identificar o tipo de uma

variavel utilizando a funcdo type(),
seguindo a sintaxe:

6

alura| 8 pata science

https://docs.python.org/3/reference/lexical_analysis.html#identifiers

PYTHON PARA DATA SCIENCE:

type(variavel)

Como exemplo, € possivel encontrar
a definicdo de todos os tipos de variaveis
gue criamos.

print(type(inteiro))
print(type(ponto_flutuante))
print(type(string))
print(type(booleano))

''' Saida:

<class 'int'>

<class 'float'>

<class 'str'>

<class 'bool'>

2.3.3 Operagdées com
valores numericos

Com os valores numéricos em
Python podemos realizar operacoes
aritméticas, mas para isso é necessario
fazer o uso dos operadores aritméticos.
Abaixo, uma tabela descrevendo a funcéo
dos operadores e sua sintaxe de uso,
sendo a e b variaveis numéricas:

Descricao Operacéo
Soma a+b
Subtracdo a-b
Multiplicagdo a*b
Divisdo com resultado real a/b
Divisdo com resultado inteiro| a//b
Poténcia a**b
Resto de divisdo (Mddulo) a%b

Além deles, existem também
fungbes que podem ser aplicadas a valores
numeéricos para executar outros calculos:

e Funcdo abs: retorna o valor absoluto
da variavel, ou seja, seu valor positivo.
o Sintaxe: abs(variavel)
o Exemplo:

abs(-13)

e Funcdo round: retorna o numero
arredondado com uma precisao
definida n casas decimais apés o
ponto decimal. Se ndo especificarmos
as casas, sera retornado o inteiro mais
proximo do ponto flutuante.

o Sintaxe: round(variavel,
numero_de casas)
o Exemplo:

round(14.3213,2)

e Funcdao pow: retorna a potenciacao de
uma base por seu exponente,
funciona do mesmo modo que o
operador **,

o Sintaxe: pow(base, expoente)
o Exemplo:

pow(3, 2)

2.4 Manipulacéo de
strings

As strings sdo usadas para
armazenar valores de texto e podem ser
criadas colocando aspas simples (') ou
aspas duplas ("). Essas variaveis sao
dadas por uma sequéncia de caracteres
podendo ser ndmeros, letras e até
simbolos. Como no exemplo:

string 1 = 'isso é uma string'
string 2 = "isso também é uma
string"

Assim como nas variaveis
numeéricas, é possivel manipular as strings
a partir de operacgdes, funcdes e até
métodos. Por serem imutaveis, sua
manipulagao resulta em cépias, ou seja,
sdo criadas novas strings a partir de uma
original que foi manipulada.

Comecando por operacbes, €

possivel utilizar os operadores de adicao
(+) e multiplicacao (*) para trabalhar e criar

7

alura | %2 pata Science

PYTHON PARA DATA SCIENCE:

novas strings. O operador de soma,
permite unir duas ou mais strings e gerar
uma string Unica. Exemplo:

ola = '0la '
mundo = ‘mundo!!’
frase = ola+mundo
print(frase)

Ja o operador de multiplicacdo vai
repetir a string em uma quantidade de
vezes igual a especificada. Para usar esse
operador colocamos a string, depois o
operador * e 0 numero de vezes que
desejamos a repeticdo. Vamos escrever a
palavra “mano” repetindo a letra “0” por 5
vezes.

parte_1 = 'man

parte_ 2 = '0o" * 5

palavra = parte_1 + parte_2
print(palavra)

Agora vamos falar de fungbes que
podem ser Udteis na manipulagdo de
strings, como a len() e str().

A fungéo len() retorna o tamanho
da string, ou seja, a quantidade de
caracteres que ela tem.

frase = 'o rato roeu a roupa do
rei de Roma'
print(len(frase))

J4 a fungdo str() retorna a
representacdo de uma string para uma
entrada.

ano = str(2023)
ano

E possivel trabalhar com diversos
métodos em strings. Métodos sdo funcdes
que séo associadas a objetos em Python.
Eles sdo usados para, de maneira facil e
consistente, realizar ac6es ou operacdes
em um objeto e para obter informacdes
sobre o objeto. Por essa razéo, os métodos
sdo uma parte importante da programagao
em Python.

Métodos podem ser executados ao
definirmos um objeto seguindo a seguinte
estrutura:

objeto.metodo()

Existem também os atributos que
sdo declarados da mesma forma que os
métodos, no entanto, ndo necessitam dos
(). E preciso verificar a documentagéo de
cada caso.

Agora vamos verificar alguns
métodos com strings. Considerando que
“string” é o seguinte texto:

string = 'o rato roeu a roupa do
rei de Roma'

Vejamos alguns métodos que
conseguimos utilizar com qualquer variavel
do tipo str:

e string.upper(): converte uma string
para maiusculas.

o Saida: 'O RATO ROEU A ROUPA
DO REI DE ROMA'

e string.lower(): converte uma string
para mindsculas.

o Saida: 'o rato roeu a roupa
do rei de roma’

e string.capitalize(): coloca a
primeira letra de uma string em
mailscula e as restantes em
minudsculas.

o Saida: 'O rato roeu a roupa
do rei de roma’

e string.replace(antigo_valor,
novo_valor): retorna uma copia da
string com a substituicdo das
ocorréncias. Exemplo:
string.replace('r', 'T").

8

alura | %2 pata Science

PYTHON PARA DATA SCIENCE:

o Saida: 'o Tato Toeu a Toupa
do Tei de Roma’

e string.find(dado): retorna o indice
da primeira ocorréncia de um texto em
na string. Exemplo, vamos encontrar o
local da primeira aparicdo de 't ' com,
string.find('t").
o Saida: 4

e string.strip(): retorna uma copia
da string original sem espacos
desnecessarios no inicio e no final.

Com o texto, ' 0la!l ', podemos
aplicar o strip e obteremos a seguinte
saida:

o Saida: '0la!’

e string.title(): retorna uma cépia
da string original com a primeira letra
de cada palavra em maiusculas.

o Saida: 'O Rato Roeu A Roupa
Do Rei De Roma’

e string.count(string): retorna o
namero de vezes que um determinado
valor aparece na string original.
Exemplo: string.count('r").

o Saida: 4

e string.isupper(): retorna True se
todas as letras na string original
estiverem em maiulsculas.

o Saida: False

e string.islower(): retorna True se
todas as letras na string original
estiverem em minusculas.

o Saida: False

Lembrando que todos esses
métodos retornam novos valores, nao
alteram a string original. Para ser feita a
alteracdo é preciso atribuir o resultado do
método na mesma string. Por exemplo:

string = 'o rato roeu a roupa do
rei de Roma'
print(string)

string = string.capitalize()
print(string)

2.5 input()

A funcdo input() permite a quem
programa receber dados da pessoa
usuéria. E usado para ler e retornar uma
entrada digitada pelo usuario como string.
A sintaxe da funcdo input é a seguinte:

input('string opcional')

A string opcional é exibida para o
usudrio na tela antes da entrada de dados.
E uma boa pratica incluir ela para orientar
0 usuario sobre o que ele deve digitar.
Como exemplo, podemos coletar um dado
de texto e mostra-lo ao usuario com print.

nome = input('Digite seu nome:
")

print('Seu nome é:', nome)

A variavel nome é uma string, pois a
funcdo input apenas retorna strings. Para
receber outros valores € necessério fazer
a conversao de valores com as func¢des de
conversao:

e int(dado): converte o dado para o
tipo inteiro.

e float(dado): converte o dado para o
tipo ponto flutuante (float).

e str(dado): converte o dado para o
tipo string.

e bool(dado): converte o dado para o
tipo booleano.

Desse modo, podemos receber os
dados em strings e transforma-los para o
tipo de dado que precisamos. Como
exemplo, vamos construir um algoritmo
somador:

9

alura | %2 pata Science

PYTHON PARA DATA SCIENCE:

num_1 = int(input('Digite o
primeiro nudmero: "))

num_2 = int(input('Digite o
segundo numero: '))

soma = num_1 + num_2

print('Resultado da soma:',soma)

O mesmo conseguimos fazer para as
demais fun¢des de converséo.

2.5.1 Formatando a saida

Conseguimos visualizar o resultado
de varidveis dentro de strings, bem como
imprimir o texto final em um print. Existem
varias maneiras de formatar os dados
mostrados dentro de um print, entre elas
a formatacdo f-string, usando o operador
de formatacao %, ou com método format.

Para utilizar a formatagéo f-string
(ou formatacao de string), colocamos um f
antes da criacao da string e as variaveis
entre chaves {}. Exemplo:

nome = "Ana Maria"

idade = 17

print(f"0 nome da aluna é {nome}
e sua idade é {idade} anos.")

O operador de formatacdo permite
a insercdo de variaveis em pontos
especificos na string com o operador %. Ele
precisa ser acompanhado de uma palavra-
chave para cada tipo de variavel que se
deseja adicionar. Seguindo a tabela
abaixo:

Tipo de variavel Palavra-chave
string %s
inteiro %d

float %f

| caractere | %C |

A sintaxe consiste na adicdo no
operador ao ponto desejado do texto.
Finalizada a escrita do texto que se deseja
exibir, o simbolo % é adicionado, com a

especificagcao da variavel entre
parénteses. Exemplo:
nome_aluno = 'Fabricio Daniel'’

print('Nome do aluno: %s'
%(nome_aluno))

Caso tenha mais de uma variavel,
devemos ordena-las conforme 0]
surgimento delas no texto e separa-las por
virgula.

nome_aluno = 'Fabricio Daniel'
idade_aluno = 15

media_aluno = 8.45

print('Nome do aluno é %s, ele
tem %d anos e sua média é %f.'
%(nome_aluno, idade_aluno,
media_aluno))

Os operadores de formatacdo de
strings com % nao funcionam diretamente
com valores booleanos. Uma maneira de
lidar com isso é convertendo o valor
booleano para uma string antes de usa-lo
na formatacdo com a fungéo str().

E possivel também usar o método
format() para fazer a formatacdo de
strings. Ele é mais flexivel e permite passar
as variaveis diretamente dentro da string,
sem a necessidade do operador %. Pelo
contrario, os marcadores sdo apenas as
{}. Exemplo:

nome_aluno = 'Fabricio Daniel'’
idade_aluno = 15

10

alura | %2 pata Science

PYTHON PARA DATA SCIENCE:

media_aluno = 8.45

print('Nome do aluno é {}, ele
tem {} anos e sua média é {}.'
.format(nome_aluno, idade_aluno,
media_aluno))

2.5.1.1 Casas decimais

Quando trabalhamos com pontos
flutuantes (float), podemos determinar a
guantidade de casas decimais apds a
virgula em todas as formatagfes de saida
de texto.

Com a formatacéo f-string, usamos a
sintaxe :.xf ap6s especificar a variavel,
sendo x o0 nimero de casas decimais
desejadas:

ponto_flutuante = 23.458012
print(f'Limitando as casas
decimais {ponto_flutuante:.2f}")

Ja com a formacao do operador %, a
sintaxe é %.xf:

ponto_flutuante = 23.458012
print('Limitando as casas

decimais
%.3T"'%(ponto_flutuante))

Por fim, com o método format(), a
sintaxe para limitar as casas € {: .xf}:

ponto_flutuante = 23.458012
print('Limitando as casas

decimais
{:.2f}" .format(ponto_flutuante))

2.5.1.2 Caracteres especiais

Caracteres especiais sdo usados
para representar acgdes especiais ou
caracteres que nao podem ser digitados
diretamente, como o Enter e a tabulagéo.

e '\n' é o caractere de nova linha,
usado para pular uma linha no texto
(funcé&o do Enter). Exemplo:

print("Precisamos de dedicacao
e paciéncia,\nPara ver o fruto
amadurecer.")

e '\t' é o caractere de tabulacéo,
usado para adicionar um espaco de
tabulagéo no texto. Exemplo:

print('Quantidade\tQualidade\n
5 amostras\tAlta\n3
amostras\tBaixa')

e '"\\' éusado para imprimir uma Unica
barra invertida. Caso ndo seja usada a
dupla barra invertida, o codigo podera
resultar em erro ou em um resultado
inesperado, pois o Python considera a
\ um chamado para um caractere
especial. Para garantir que néo
ocorram erros, usamos esta sintaxe.
Exemplo:

11

alura| &8 pata Science

Primeiros Passos

print("Caminho do arquivo:
C:\\arquivos\\documento.csv")

Satilda:
Caminho do arquivo:
C:\arquivos\documento.csv

e "\"" € usado para imprimir aspas
duplas quando estamos trabalhando
com uma string criada a partir de
aspas duplas ". Caso seja uma string
criada por aspas simples ', isso néo é
necessario. Um exemplo:

print("Ouvi uma vez \"Os
frutos do conhecimento sao os
mais doces e duradouros de
todos.\"")

Saida:

Ouvi uma vez "Os frutos do
conhecimento sdo os mais doces
e duradouros de todos."

e '\'' é usado para imprimir aspas
simples quando estamos trabalhando
com uma string criada a partir de
aspas simples '. Caso seja uma string
criada por aspas duplas ", isso ndo é
necessario. Exemplo:

print('Minha professora uma
vez disse: \'Estudar é a chave
do sucesso.\' ")

Saida:
Minha professora uma vez
disse: 'Estudar e a chave do

[

sucesso.

12

alura|

PYTHON PARA DATA SCIENCE:

3 ESTRUTURAS
DE CONTROLE

Entre as estruturas de controle estao
as estruturas condicionais e as estruturas
de repeticao.

3.1 Estruturas
condicionais

Nas estruturas condicionais temos o
if,0elseeoelif.

O if é uma palavra-chave em
Python que significa “se”. Ele é usado para
formar uma estrutura condicional, que
permite que vocé verifique se uma
determinada condicdo é verdadeira ou
falsa e, em seguida, executa um bloco de
codigo especifico, se a verificacao for
verdadeira. A sintaxe para usar 0 if é:

if condicao:

Podemos montar um exemplo que
identifica se um dado nimero é maior que
5:

num = int(input('Digite um
namero: '))
if num>5:

print('0O numero é maior que
5%)

Ja o else é uma estrutura opcional
usada em conjunto com o if para formar
uma estrutura condicional. O else € uma
palavra-chave para “sendo” e é executado
guando a condigdo especificada na
estrutura condicional anterior ndo for

verdadeira (False). A sintaxe para usar o
else é:

if condicao:

else:

Podemos montar um exemplo que
identifica se um dado nidmero é maior ou
menor que 5:

num = int(input('Digite um
nuamero: '))
if num>5:

print('O numero é maior que
5%)
else:

print('O numero é menor que
5%)

Por fim, temos 0 elif, uma palavra-
chave em Python que significa "sendao, se"
e pode ser considerado uma unido do else
com o if. Ela é usada em conjunto com a
palavra-chave if para formar uma
estrutura condicional encadeada. Sua
sintaxe é dada pela seguinte estrutura:

if condicaol:
elif condicao2:

elif condicao3:

O elif permite encadear condigdes.
Se a primeira condicéo for avaliada como
False, o interpretador Python avaliara a
proxima condicdo no elif, e assim por
diante. Isso continuara até que uma
condicdo seja avaliada como True, ou
nenhuma das condicdes sejam
verdadeiras e sejam ignorados os blocos
de codigo.

13

alura | %2 pata Science

PYTHON PARA DATA SCIENCE:

Um exemplo de cdodigo com elif é a
estrutura para verificar, dados dois
ndmeros, qual € o maior entre eles ou se
ambos sao iguais:

numl = float(input('Digite o 1°
ndmero: '))
num2 = float(input('Digite o 2°
ndmero: '))

if numl > num2:

print(f'0 primeiro numero é
maior: {numl}")
elif num2 > numl:

print(f'0 segundo numero é
maior: {num2}')
else:

print('0Os dois numeros sao
iguais. ')

3.1.1 Operadores em
condicionais

Para formar uma expresséo légica
podemos fazer o uso de operadores
relacionais e operadores légicos.

Os operadores relacionais sao
simbolos utilizados com objetivo de
comparar valores ou expressoes e verificar
a relacdo entre eles. Vejamos alguns
deles:

e Maior que (>): verifica se a primeira
expressdo € maior que a segunda.

e Menor que (<): verifica se a primeira
expressdo é menor que a segunda.

e Maior ou igual a (>=): verifica se a
primeira expressdo é maior ou igual a
segunda.

e Menor ou igual a («=): verifica se a
primeira expressao é menor ou igual &
segunda.

e Igual a (==): verifica se duas
expressdes sao iguais.

e Diferente de (!=): verifica se duas
expressoes sao diferentes.

Estes operadores retornam um valor
booleano (True ou False) baseado na
comparagdo entre o0s valores ou
expressoes.

Os operadores légicos sdao
simbolos utilizados para realizar
operag0es logicas, entre valores, podendo
retornar True ou False. Os operadores
l6gicos sdo: and, or e not. De modo que,

e and retorna verdadeiro se ambas as
expressoes légicas forem verdadeiras;

e or retorna verdadeiro se pelo menos
uma das expressbes logicas for
verdadeira; e

e not inverte o valor légico da
expressao, ou seja, se a expressao
era True, ele retorna False, e vice-
versa.

3.1.2 Operador Ternario

Podemos compactar o resultado de
uma condicao if-else em uma unica linha.
E uma alternativa Gtil para codificacdo mais
simples e clara, especialmente quando se
trata de uma condigdo simples. A sintaxe
do operador ternario é a seguinte:

valor_caso_verdade if condigao
else valor_caso_falso

Seu funcionamento se da de modo
gue a condicdao é avaliada e, se for
verdadeira, o valor_caso verdade é
retornado, caso contrario, 0]
valor_caso falso €& retornado. Em
outras palavras, é uma forma de atribuir
valores a variaveis com base em uma
condigéo.

Um exemplo simples é a verificagcao
se um nUimero € positivo ou negativo.

num = -5

resultado = ‘'positivo’ if num >=
0@ else 'negativo'
print(resultado)

14

alura | %2 pata Science

PYTHON PARA DATA SCIENCE:

Entendendo o cddigo: o operador
ternério testa a condicdo num >= 0, se for
verdadeira, o valor de 'positivo' é
atribuido a resultado, caso contrério, o
valor de ‘'negativo' é atribuido a
resultado.

3.2 Estruturas de
repeticao

Nas estruturas de repeticdo temos o
while e o for.

O while é uma palavra-chave em
Python que significa “enquanto”. Ela
permite executar um bloco de cdédigo
repetidamente enquanto uma determinada
condicéo é verdadeira. Sua sintaxe é dada
da seguinte forma:

while condicao:

O bloco de codigo dentro do lago
while sera executado repetidamente
enquanto a condigdo for avaliada como
True. Quando a condicdo for avaliada
como False, o lago sera interrompido e 0
programa continuara a executar o codigo
depois do lago.

Um exemplo muito comum de uso do
while é construindo um contador, um
projeto que permite uma variavel numérica
ser incrementada 1 a 1, como uma
contagem. Vamos fazer o contador de 1 a
10:

contadora = 0

while contadora < 10:

contadora += 1
print(contadora)

O incremento de contadora é dado
por um operador de atribuicdo +=. Em
Python temos vérios tipos de operadores
de atribuicdo como pode ser observado na
tabela abaixo:

Sintaxe do
operador
a = b |Atribui o valor de b em a

Soma o valor de b na
variavel a
b Subtrai o valor de b na
variavel a
a *= b [Multiplica o valor de b por a
a b

b

Descricao

Divide o valor de b por a
Realiza divisdo inteira da
variavel b por a

o O resto da divisdo de b por
a%=b L
a € atribuido a a

Enquanto isso, o lago for permite
iterar sobre um conjunto de elementos. A
sua sintaxe é dada da seguinte forma:

for elemento in conjunto:

O for € uma palavra chave para
‘por” e podemos entender sua estrutura
como “por cada elemento em um dado
conjunto faca...”. Isso porque ele itera

sobre cada elemento do conjunto

15

alura | %2 pata Science

PYTHON PARA DATA SCIENCE:

especificado e executa o bloco de cédigo
dentro do lago para cada elemento.

Quando o lago chega ao final do
conjunto, ele é interrompido e o programa
continua a execucao apos o laco.

Podemos também construir uma
contadora com for, mas para isso
precisamos de um conjunto iteravel que
possa ser utilizado nele. Pensando nisso,
utilizaremos a funcao range.

A fun¢ao range é capaz de gerar
uma sequéncia de nimeros inteiros. A sua
sintaxe é dada por:

range(inicio, fim, passo)

Segundo a documentacdo, ae
range() gera uma sequéncia de nimeros
inteiros a partir do valor do parametro
inicio até o valor do parametro fim, de
acordo com o valor do parametro passo.
Se inicio ndo for especificado, o valor
padrdo € 9. Se passo nao for especificado,
o valor padrao é 1.

for contador in range(1l, 11):
print(contador)

3.2.1 Comandos
relacionados aos lacos

Conseguimos controlar o fluxo de
execucdes dentro do bloco de cddigo dos
lacos while e for através dos comandos
de controle continue e break.

O continue interrompe a iteracdo
atual do laco e salta para a proxima
iteracdo, ou seja, retorna ao inicio do
codigo. Ja o break vai interromper a
execucdo do lago completamente, saindo
do bloco de cédigo.

while condicao:
—P # cddigo dentro do lago
continue
codigo dentro do laco
codigo fora do lacgo

while condicao:
codigo dentro do lago

break
| # codigo dentro do lago
codigo fora do lago

16

alura| &8 pata Science

https://docs.python.org/3/library/functions.html#func-range

PYTHON PARA DATA SCIENCE:

4 ESTRUTURA
DE DADOS

4.1 Listas

Listas sdo sequéncias mutaveis,
normalmente usadas para armazenar
colegbes de itens.

Podemos agrupar um conjunto de
dados com as listas de maneira ordenada.
Para criar uma lista com valores, sdo
colocados os dados entre colchetes ([])
separados por virgulas.

Elas também podem armazenar
qualquer tipo de item, incluindo numeros,
strings, objetos, outras listas e também
outras estruturas de dados. Todos esses
tipos de dados podem ser armazenados
juntos em uma mesma lista, pois ela nao
se limita a armazenar um Unico tipo de
dado.

Um exemplo de criacdo de lista €
construcdo de um conjunto de dados
cadastrais:

lista = ['Daniel',2310.30,
24,True]
print(lista)

Cada elemento da lista tem um
indice que indica sua posicao na lista. Os
indices comecam em © e vao até o
tamanho da lista menos 1.

No exemplo anterior, temos 4
elementos com indices variando de 0 a 3,
ordenadamente. Ou ordenados de -4 a -
1, visto que os indices podem ser
negativos também.

E possivel selecionar
separadamente os elementos de uma lista
colocando seus indices.

lista = ['Daniel’,2310.30,
24,True]

print(lista[@],lista[1],lista[2]
,lista[3])

print(lista[-4],1lista[-
3],1lista[-2],1lista[-1])

E possivel usar as estruturas de
repeticdo para acessar e ler os valores de
uma lista. A forma mais comum de se fazer
isso é utilizando o lago for:

lista = ['Daniel',2310.30,

24,True]

for elemento in lista:
print(elemento)

Podemos também usar o lago while,
através de um contador:

lista = ['Daniel’,2310.30,

24,True]

contadora = 0

while contadora < 4:
print(lista[contadora])
contadora += 1

17

alura | %2 pata Science

PYTHON PARA DATA SCIENCE:

4.1.1 Métodos com listas

E possivel observar que o bloco de _ Listas oferecem muitas funcoes e
codigo para ler uma lista com while & métodos Uteis para manipular os itens
muito maior que com for. Por isso, quando arma_z_enados, como adicionar, remover,
trabalhamos com estruturas de dados, é classificar e pesquisar elementos.

preferivel utilizar o lago for. Entdo vamos verificar alguns

métodos com listas. Considerando que

Além disso, podemos usar as o s))
b lista” é o seguinte conjunto de dados:

mesmas fungdes e métodos utilizados em
variaveis Unicas como strings, inteiros,
floats, etc nos elementos da lista. Mas é lista = ['Osman Presley', 13,
preciso que o elemento manipulado seja 8.5, 8.5]

do tipo de variavel que permite a aplicacao

das funcbes e métodos. Vejamos alguns métodos que

conseguimos utilizar com qualquer variavel

Por exemplo, é possivel deixar o do tipo 1ist (lista):

elemento 'Daniel’, uma string, em

mailsculas com o meétodo upper(): e append: adiciona um elemento ao final
da lista.
lista = ['Daniel’,2310.30, o Exemplo: lista.append(4.5), a
24,True] lista agora é ['Osman Presley',
13, 8.5, 8.5, 4.5].
print(lista[@].upper()) ° Ic_lear: remove todos os elementos da
ista.
o Exemplo: 1lista.clear(), a lista
agora é [].
e copy: faz uma cépia da lista.
o Exemplo: nova_lista =
Conseguimos também substituir lista.copy(), nova_lista
elementos, além de manipula-los. Para agora é ['Osman Presley', 13,
isso, especificamos o indice do elemento a 8.5, 8.5, 4.5] e é uma copia
ser substituido e atribuimos o novo dado independente de lista.
com o operador de atribuicdo. Podemos e count: conta quantas vezes um
entdo substituir a string 'Daniel’ por sua elemento aparece na lista.
correspondente em mailscula (' DANIEL"): o Exemplo: lista.count(8.5),
retorna 2.
lista = ['Daniel',2310.30, e extend: adiciona os elementos de
24,True] uma lista ao final da lista atual.
print(lista) o Exemplo:

lista.extend(['manha‘, 'tard
e'l), li ra & ['Osman
lista[@] = lista[@].upper() Ppiiléi.)suili?o agég} 8.5,
print(lista) 'manh3', 'tarde'].
e index: retorna o indice do primeiro
elemento com o valor especificado.
o Exempilo: lista.index(13),
retorna 1.
e insert: adiciona um elemento em
uma posicao especifica da lista.
o Exemplo: lista.insert(2,
4.5), a lista agora é ['Osman

18

alura | %2 pata Science

PYTHON PARA DATA SCIENCE:

Presley', 13, 4.5, 8.5,
8.5].

e pop: remove e retorna o elemento na
posicdo especificada (ou na Ultima
posicdo se nao for fornecida uma
posicao).

o Exemplo: lista.pop(1l), retorna
13 e a lista agora é ['Osman
Presley', 8.5, 8.5].

e remove: remove O primeiro elemento
com o valor especificado.

o Exemplo: lista.remove(8.5), a
lista agora é ['Osman Presley’,
13, 8.5].

e reverse: inverte a ordem dos
elementos na lista.

o Exemplo: lista.reverse(), a
lista agora é [8.5, 8.5, 13,
‘Osman Presley'].

Ha também o método sort que
ordena os elementos na lista. Mas como
nossa lista ndo é unicamente numérica,
nao é possivel utilizar esse método, pois
ele ordenara apenas valores numéricos ou
apenas valores textuais.

Uma fungdo bastante utilizada com
listas € a 1en(), que retorna a quantidade
de elementos dentro delas:

idades = [23,15,37,43,90,53]
print(len(idades))

Além dela também existe a estrutura
de particdo: uma maneira de acessar um
subconjunto de elementos de uma lista.
Podemos fazer isso através da estrutura
de particéo por indices.

O operador de particdo de lista é
representado pelos colchetes ([]) e
permite que vocé especifique um intervalo
de indices separados por dois pontos (:)
para acessar os elementos desejados.

letras =
['A","B’,'C",'D","E","F","G']
print(letras[2:6])

alura | %2 pata Science

Com letras[2:6], é acessado o0s
elementos da lista letras de indice 2 até
o indice 5, ou seja, os elementos ['C"',
‘D', 'E', 'F'].

4.2 Dicionarios

Os dicionarios sdo um tipo de
estrutura de dados que armazenam pares
de chave-valor. Eles sdo delimitados por
chaves {} e os pares chave-valor sao
separados por virgulas, como mostra a
sintaxe:

dicionario = {chave: valor}

A chave é um elemento Unico que
identifica um valor no dicionério, enquanto
o valor é o item que é armazenado para a
chave. As chaves e os valores podem ser
de qualquer tipo de dado.

Os dicionarios séo Uteis para
armazenar e acessar dados de maneira
organizada e rapida, além de permitirem
uma organizagdo mais dinamica.

Um exemplo é construir uma ficha de
cadastro de uma pessoa funcionaria em
uma empresa.

cadastro = {'numero_cadastro':
130089,
'dia_cadastro': 3,
'mes_cadastro': 2,
"funcao': 'limpeza'}
cadastro

19

PYTHON PARA DATA SCIENCE:

Acessamos o0s valores de cada
elemento especificando sua chave
correspondente:

cadastro = {'numero_cadastro':
130089,

'dia_cadastro': 3,

"mes_cadastro': 2,

‘funcao': 'limpeza'}
print(cadastro['numero_cadastro'
],cadastro['dia_cadastro'],cadas
tro['mes_cadastro'],cadastro['fu
ncao'])

Podemos alterar o valor de cada
chave especificando a chave do elemento
gue sera modificado e atribuindo o novo
dado com o operador de atribuigdo. Vamos
trocar a fungdo de Ilimpeza para
manutencao:

cadastro = {'numero_cadastro':
130089,
'dia_cadastro': 3,
'mes_cadastro': 2,
‘funcao': 'limpeza'}
print(cadastro)
cadastro['funcao'] =
‘manutencao’
print(cadastro)

4.2.1 Métodos com
dicionarios
Assim como as listas, os dicionarios

também oferecem muitas fungbes e
métodos Uteis para manipular seus itens.

Entdo, vamos verificar alguns
métodos com listas, considerando que
“dici” é o seguinte conjunto de dados:

dici = {'nome': 'Osman’,
'idade': 13,
'nota_1': 8.5,
‘nota_2': 8.5}

Vejamos alguns métodos que
conseguimos utilizar com qualquer variavel
do tipo dict (dicionario):

e clear: remove todos os itens de um

dicionario.
o Exemplo: dici.clear() a lista
agora é {}.

e copy: retorna uma copia do dicionario.

o Exemplo: novo dicionario =

dici.copy(), novo_dicionario

agora é {'nome': ‘'Osman',

'idade': 13, 'nota_ 1': 8.5,

'nota_2': 8.5} e é uma copia
independente de dici.

e dict.fromkeys: cria um novo
dicionario com chaves fornecidas por
um iteravel e todos os valores
definidos como o valor padréao
fornecido.

o Exemplo: novas_notas =
dict.fromkeys(['nota 1°,
'nota_2'], 8.80), novas_notas
€ {'nota_1': 8.0, 'nota 2':
8.0}.

e get: retorna o valor associado a uma
chave especifica no dicionario.

o Exemplo: dici.get('idade"),
retorna 13.

e items: retorna uma lista de tuplas que
representam os itens do dicionario
(chave e valor).

o Exemplo: dici.items(), retorna
[("nome", "Osman'),
('idade', 13), ('nota_1',
8.5), ('nota_2', 8.5)].

20

alura| &8 pata Science

https://www.alura.com.br/artigos/conhecendo-as-tuplas-no-python

PYTHON PARA DATA SCIENCE:

e keys: retorna uma lista de todas as ‘nota_2': 8.5}
chaves do dicionario. -

o Exemplo: dici.keys(), retorna
['nome', 'idade', 'nota_1',

'nota_2"']. for chaves in dici.keys():
e pop.: remove e retorna o Vvalor print(dici[chaves])
associado a uma chave especifica no
dicionério.

o Exemplo: dici.pop('nome"),
retorna 'Osman’ e o dicionario
sem a chave 'nome".

e popitem: remove e retorna um item
aleatdrio do dicionario.

o Exemplo: dici.popitem()

e setdefault: retorna 0 valor for valores in dici.values():
associado a uma chave especifica no print(valores)

dicionario. Se a chave nao existir, ela

é adicionada ao dicionario com o valor

padréo fornecido.

o Exemplo:
dici.setdefault('nome"),
retorna 'Osman’;

dici.setdefault('nota 3',4.
5) o dicionario serd {'nome’:

‘Osman ", idade’: 13, for chaves, valores in
nota_1': 8.5, nota_2": ...
8.5, 'nota_3': 4.5} dici.items():
e update: adiciona os itens de um outro print(chaves, valores)

dicionario para o dicionario atual e
atualiza pares chave-valor existentes.

o Exemplo:
dici.update({'nota 3': 4.5,
'sobrenome’': 'Presley'}), O
dicionario agora € {'nome’:
"Osman’, 'idade': 13,
'nota_1': 8.5, 'nota_2"':
8.5, 'nota_3': 4.5,
'sobrenome’: 'Presley'}.

e values: retorna uma lista de todos os
valores do dicionéario.

o Exemplo: dici.values(),
retorna ['Osman’', 13, 8.5,
8.5].

Os métodos items, keys e values
permitem a leitura dos dados do dicionario
através de lacos for. Vamos fazer trés
diferentes leituras com for, utilizando os
trés métodos que aprendemos:

dici = {'nome': 'Osman’,
‘idade': 13,
'nota_1': 8.5,

21

alura| &8 pata Science

CHEGAMOS AO FIM

Espero que vocé consiga ter um bom proveito das informagdes coloca-
das aqui e que elas consigam te ajudar em seus estudos em Python e
Data Science!

O resumo contém as informacdes ja transmitidas em aula, mas para so-
lidificar o aprendizado em Python €& necessario sempre praticar
bastante. No curso, vocé tem acesso a varios desafios que vocé con-
segue solucionar com os estudos na Alura!

Continue sempre estudando e quaisquer duvidas vocé pode utilizar o
forum e o discord da Alura.

Bons estudos!

U3 | &2 s ience

