
alura

PROBLEMA: Faça a soma de dois
números digitados pelo usuário.

alura

a soma de dois
números

digitados pelo
usuário.

peça dois
números ao

usuário.

some esses
números.

mostre o
resultado.

teste e
melhore o

código.

PROBLEMA GERAL

PASSO 01

PASSO 02 PASSO 03

PASSO 04

01000110 11110011 01110010 01110101 01101101
00100000 01001111 01110000 01110011

numero1 = float(input())

numero2 = float(input())

soma = numero1 + numero2

print(soma)

2
5
7.0

SAÍDA

Crie um arquivo e adicione o
primeiro esboço do código.

CRIAR O CÓDIGO

01000110 11110011 01110010 01110101 01101101
00100000 01001111 01110000 01110011

def somar(a, b):

return a + b

numero1 = float(input("Digite o primeiro

número: "))

numero2 = float(input("Digite o segundo

número: "))

resultado = somar(numero1, numero2)

print(f"A soma é: {resultado}")

Digite o primeiro número: 2
Digite o segundo número: 5
A soma é: 7.0

SAÍDA

Organize o código em funções
pequenas em que cada uma tem
uma única responsabilidade.

MELHORANDO O CÓDIGO

01000110 11110011 01110010 01110101 01101101
00100000 01001111 01110000 01110011

def somar(a, b):

return a + b

try:

numero1 = float(input("Digite o

primeiro número: "))

numero2 = float(input("Digite o

segundo número: "))

resultado = somar(numero1, numero2)

print(f"A soma é: {resultado}")

except ValueError:

print("Erro: Digite apenas números

válidos!")

Digite o primeiro número: abc
Erro: Digite apenas números válidos!SAÍDA

E se o usuário digitar algo que não
seja um número? O código
quebraria!

TRATAR POSSÍVEIS ERROS

01000110 11110011 01110010 01110101 01101101
00100000 01001111 01110000 01110011

def somar(a, b):

return a + b

try:

numero1 = float(input("Digite o

primeiro número: "))

numero2 = float(input("Digite o

segundo número: "))

resultado = somar(numero1, numero2)

print(f"A soma é: {resultado}")

except ValueError:

print("Erro: Digite apenas números

válidos!")

Digite o primeiro número: 5
Digite o segundo número:
Erro: Digite apenas números válidos!

Digite o primeiro número: 2
Digite o segundo número: 5
A soma é: 7.0

SAÍDA

Verifique como o código reage a
diferentes cenários!

TESTANDO MANUALMENTE

POSSÍVEIS ERROS EM PROJETOS

Erro Mensagem Motivo Solução

Entrada Inválida ValueError Ocorre quando tentamos
converter um valor que não
pode ser transformado no tipo
esperado. Ex: float("abc").

Tratar erro com bloco
try/except.

Tipo Inválido TypeError Ocorre quando realizamos
operações incompatíveis entre
tipos de dados. Ex: 10 + "5".

Converter valores
antes de operações.
Ex: int("5").

Chave inexistente KeyError Ocorre ao tentar acessar uma
chave que não existe em um
dicionário.

Usar .get("chave",
valor_padrao) para
evitar erro.

Índice fora da lista IndexError Ocorre ao tentar acessar um
índice que não existe em uma
lista. Ex: acessar lista[5] em
uma lista de 3 itens).

Conferir len(lista) antes
de acessar um índice.

POSSÍVEIS ERROS EM PROJETOS

Erro Mensagem Motivo Solução

Erro de
importação

ImportError Ocorre quando um módulo é
encontrado, mas não pode ser
carregado corretamente.

Verificar se o módulo
está instalado e
disponível.

Módulo não
encontrado

ModuleNotFou
ndError

Ocorre quando tentamos
importar um módulo que não
está instalado ou não existe.

Garantir que o módulo
está instalado com
`pip install modulo`.

Atributo
inexistente

AttributeError Ocorre quando tentamos
acessar um atributo ou método
que não existe em um objeto.
Ex: "abc".append(5).

Converter valores
antes de operações.
Ex: int("5").

Sintaxe inválida SyntaxError Ocorre quando há um erro na
escrita do código, como
esquecer um : ou parênteses.

Revisar a sintaxe e
corrigir erros antes de
rodar o código.

alura

Para conhecer mais sobre erros específicos,

consulte a documentação oficial do Python.

https://docs.python.org/pt-br/3/library/exceptions.html

01000110 11110011 01110010 01110101 01101101
00100000 01001111 01110000 01110011

BOAS PRÁTICAS

CONHECENDO A PEP 8

É um guia de estilo para escrever código
Python de forma legível, organizada e
padronizada. Seguir essas regras facilita a
manutenção, colaboração e qualidade do
código.

Acessar!

https://peps.python.org/pep-0008/

01000110 11110011 01110010 01110101 01101101
00100000 01001111 01110000 01110011

Organização e estrutura do código

Nomeação de variáveis, funções e classes

Comentários e documentação clara e objetiva

alura

Para se aprofundar em boas práticas

Acessar!

https://www.alura.com.br/formacao-boas-praticas-python

alura

PASSO 1
Definir o problema.

PASSO 2Organizar a execução
e passo a passo do

projeto.

01000101 01110011 01100011 01101111 01101100 01100001
00100000 01100100 01100101 00100000 01000100 01100001
01100100 01101111 01110011 00001010

PASSO 3
Estruturar o projeto.

PASSO 4
Escrever o código.

PASSO 5
Testar e refinar o
código.

alura

VÍDEO 02

alura

PROBLEMA: Faça um contador de
palavras. O projeto deve receber uma

frase do usuário e contar quantas
vezes cada palavra aparece.

alura

Contador de
Palavras

Entrada e
Processamento

de Dados.

PROBLEMA GERAL

PASSO 01

PASSO 02 PASSO 03

PASSO 04Criar a
contagem das

palavras.
Exibir a

contagem.

Testar e
Refinar o
Código.

01000110 11110011 01110010 01110101 01101101
00100000 01001111 01110000 01110011

frase = input("Digite uma frase: ")

palavras = frase.split()

print(len(palavras))

print(palavras)

CÓDIGO INICIAL
✔ Crie um arquivo contador.py e

desenvolva o código do contador.

Digite uma frase: olá mundo mundo!!
3
['olá', 'mundo', 'mundo!!']

SAÍDA

contador.py

01000110 11110011 01110010 01110101 01101101
00100000 01001111 01110000 01110011

def contar_palavras(frase):

palavras = frase.split()

print(palavras)

return len(palavras)

APRIMORANDO O CÓDIGO

✔ crie uma função para o contador.

contador.py

01000110 11110011 01110010 01110101 01101101
00100000 01001111 01110000 01110011

from contador import contar_palavras

frase = input("Digite uma frase: ")

quantidade = contar_palavras(frase)

print(f"A frase tem {quantidade}

palavras.")
Digite uma frase: livros são livros.
['livros', 'são', 'livros.']
A frase tem 3 palavras.

SAÍDA

APRIMORANDO O CÓDIGO

✔ crie um arquivo main.py para
executar os testes no mesmo
diretório que contador.py.

main.py

Possíveis entradas do usuário

Tipo de Entrada Exemplo Problema

Entrada Vazia Usuário pressiona Enter
sem digitar nada ("").

O código pode falhar ou retornar
valores incorretos.

Apenas espaços (" ") Deve ser tratado como vazio.

Apenas pontuação (",.!?;:") Não contém palavras válidas.

Texto com pontuação ("Olá, mundo!") A pontuação interfere na contagem
correta.

Caracteres especiais e
acentos

("Python é incrível!") Pode gerar palavras separadas caso
haja tratamento incorreto.

Vários espaços entre
palavras

("Essa frase é curta !") O split() pode gerar listas incorretas.

Possíveis entradas do usuário

Tipo de Entrada Exemplo Problema

Palavras repetidas ("Python python é bom"). Deve contar corretamente a
frequência.

Maiúsculas e
minúsculas

("Python PYTHON python"). O código deve tratar palavras como
iguais.

Números na frase ("Faço 26 anos em 2
meses.").

Dependendo do contexto, pode ser
palavra válida ou não.

Somente números ("123 456 789") Números podem ser tratados como
palavras.

Mistura de letras e
números

("Python3 é melhor que
Python2?")

A pontuação pode separar
indevidamente.

01000110 11110011 01110010 01110101 01101101
00100000 01001111 01110000 01110011

def limpar_texto(texto):

texto = texto.lower()

caracteres = ",.!|?;:\"'()[]{}"

for char in caracteres:

texto = texto.replace(char, "")

return texto

def contar_palavras(frase):

frase = limpar_texto(frase)

palavras = frase.split()

return len(palavras)

APRIMORANDO O CÓDIGO

✔ faça o tratamento da frase para
remover pontuação;

✔ converta as palavras em
minúsculas.

contador.py

01000110 11110011 01110010 01110101 01101101
00100000 01001111 01110000 01110011

> def limpar_texto(texto): …

def contar_palavras(frase):

frase = limpar_texto(frase)

if not frase.strip():

return {}

palavras = frase.split()

contagem = {}

for palavra in palavras:

contagem[palavra] =

contagem.get(palavra, 0) + 1

return contagem

APRIMORANDO O CÓDIGO

✔ use um dicionário para
armazenar a frequência das
palavras e evitar entradas
inválidas.

contador.py

01000110 11110011 01110010 01110101 01101101
00100000 01001111 01110000 01110011

from contador import contar_palavras

frase = input("Digite uma frase: ").strip()

if not frase:

print("Erro: Nenhuma frase foi digitada.")

else:

resultado = contar_palavras(frase)

if resultado:

print("Contagem de Palavras:")

for palavra, quantidade in

resultado.items():

print(f"{palavra}:{quantidade}")

else:

print(f"Nenhuma palavra válida foi

encontrada.")

main.py APRIMORANDO O CÓDIGO

✔ verifique se a entrada está
vazia;

✔ apresente a contagem de
palavras de forma clara.

01000110 11110011 01110010 01110101 01101101
00100000 01001111 01110000 01110011

EXEMPLOS DE RESPOSTA:

Digite uma frase: OLÁ, mUndo!
Contagem de palavras:
olá: 1
mundo: 1

SAÍDA

Digite uma frase: Python3 é
melhor que Python2 em 2025?
Contagem de palavras:
python3: 1
é: 1
melhor: 1
que: 1
python2: 1
em: 1
2025: 1

SAÍDA

Digite uma frase: python(] é
incrível incrível.
Contagem de palavras:
python: 1
é: 1
incrível: 2

SAÍDA

alura

Compartilhe um resumo de seus novos
conhecimentos em suas redes sociais.

#aprendizadoalura

	Slide 1: PROBLEMA: Faça a soma de dois números digitados pelo usuário.
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Acessar!
	Slide 11
	Slide 12: Acessar!
	Slide 13
	Slide 14
	Slide 15: VÍDEO 02
	Slide 16: PROBLEMA: Faça um contador de palavras. O projeto deve receber uma frase do usuário e contar quantas vezes cada palavra aparece.
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Compartilhe um resumo de seus novos conhecimentos em suas redes sociais. #aprendizadoalura

